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Abstract. Searches for phrases and word sets in large text arrays by means of 
additional indexes are considered. Their use may reduce the query-processing 
time by an order of magnitude in comparison with standard inverted files.  
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INTRODUCTION 

 
Inverted files or their analogs are commonly used in searching for words or 

phrases [1–6]. An inverted file is a set of records of the form (ID, P), where ID 
is the document identifier and P is the position of a word (for example, the 
ordinal number of the word in a document). All records corresponding to a 
single word are stored in sequence so as to permit rapid reading during searches. 
Words in documents are encountered with different frequencies. The maximum 
time to respond to a search query, which is a very important parameter, is 
determined by the most frequently used words. Accordingly, we need to hasten 
the search for phrases that contain common words. To that end, we may create 
additional indexes.  

In the present work, we consider the search for phrases or word sets in texts. 
The search query is a several words, and the search result is the list of 
documents with the indication of positions where the specified words may be 
found. We consider both precise search for phases and searches in which 
distance is taken into account. In the latter case, we look for documents where 
the target words are as close together as possible. That requires the storage of 
information in an index regarding each occurrence of each word in the 
documents. 



 

This work is a continuation of [7], where we distinguished between three 
groups of words. 

1. Stop words: and, at, or. These are very commonly used and may not be 
included in the index. For example, prepositions. In what follows, such words 
will be called stop words even if, in some form, we include information 
regarding these words in the index. 

2. Frequently used words. These words are frequently encountered but 
convey meaning and should be included in the index. 

3. All other words are classified as ordinary words. 
In creating the index, we use a morphological analyzer. For each word form 

in the dictionary, the analyzer provides a list of numbers of the basic word 
forms. The number of the basic form is in the range from zero to WordsCount − 
1, where WordsCount is the number of different basic forms (around 200 000 for 
Russian in the dictionary employed). 

If the word does not appear in the analyzer’s dictionary, we assume that its 
basic form is the same as the word. 

When using the analyzer, we use three groups division approach not to words 
itself but to the basic forms of the words. In other words, there are three types of 
basic word forms in terms of the frequency with which they are encountered: 
stop basic forms, frequently used basic forms, and others. 

The presence of several basic forms often complicates the software, and in 
some cases it makes sense to describe the algorithm without becoming involved 
in the technical details. 

In the present work, we assume that any words may be encountered in the 
search query, regardless of their frequency of occurrence. 

 
NOTATION 

 
*, multiplication; 
<<, bitwise left shift, used for integers with no sign; 
|, bitwise or, used for integers with no sign; 
|X|, modulus of the number X; 
<=, less than or equal to, in the comparison of two numbers;     
!=, not equal to;  
Record.Field, identification of the field Field corresponding to the record 

Record. A record is a standard type of data, associated with several named 
fields. 

 
STRUCTURE OF THE INDEX 

 



 

In describing basic concepts, we will not specify the implementation of the 
index. However, insofar as technical details are described, we will assume the 
index structure described in [7]. 
 For the basic form of the word, we define a stream as the list of records (ID, 
P) regarding its occurrences in the documents. The record (ID, P) is named as 
posting. Those records are stored sequentially in the index. The stream is 
described by a small structure, a descriptor, in which information regarding the 
location of the stream data in the index file is stored. 

 
SEARCH INDEXES FOR PHRASES CONSISTING OF STOP WORDS 

 
In the case of a query consisting entirely of stop words, we may use the 

additional stop word indexes described in [7–12]. Such an index stores all the 
information regarding the occurrences of any adjacent stop words w, v. 
However, the number of records may reach 3–30 millions in an index created for 
30 GB of text, as shown in [7]. The problem is that if the search query contains 
n stop words (3, 4, or more), we need to consider O(n2) streams for the search in 
this case.  

Consequently, we need to create an index containing information regarding 
the appearance of all phrases consisting of stop words. 

We introduce the parameters MinLength < MaxLength, and construct indexes 
for phrases of length L, where MinLength <= L <= MaxLength. 

For example, if the text has 10 stop words arranged in sequence, we will have 
nine phrases with 2 words, eight phrases with 3 words, seven phrases with 4 
words, and so on.  

To create the index, we use a B-tree [13]. The key to the tree is the list of 
numbers of stop words (i.e. a phrase that consists of several stop words 
converted to a list of this stop word’s numbers). The value of the key is a 
reference to an inverted index in which information regarding the occurrences of 
the corresponding phrase is stored. The order will be disregarded in the search. 
Therefore, the lists are sorted in increasing order. 

In all, there are MaxLength − MinLength + 1 indexes. 
Note that, for a query consisting entirely of stop words, only a precise search 

is considered. There will be no other words between the target words in the 
fragment of text that is found. This may be justified for the following reasons. 

1. These words are often encountered. For practically every combination of 
such words, there will be an appearance in texts. 

2. A significant proportion of such queries may relate to set phrases in which 
the composition and order of the words is fixed. 

3. Such a query may be generated by copying a phrase from already existing 
text so as to search other documents that may include the phrase. 

 



 

ALGORITHM FOR INDEX CREATION 
 
We now describe the algorithm when using a morphological analyzer. 
We assume that we have a stop list consisting of all the stop basic forms. 
We create a queue Queue, whose elements are records QueueItem with three 

fields (ID, P, Forms, Index, Next). Here Forms is a list of the numbers of the 
words’ basic forms; Index is an auxiliary variable; and Next is the next element 
of the queue. 

When we read files for each occurrence (ID, P) of a word w, we form the list 
Forms of the basic word forms of w that appear in the stop list. 

If the Forms field is not empty, we add the record (ID, P, Forms) to the end 
of Queue. Then, if the length of Queue exceeds MaxLength, we remove the first 
element. We call up the function Process(Begin of Queue, 1). 

If Forms is empty, then, as long as Queue is not empty, we call up the 
function Process(Begin of Queue, 1) and remove the first element in the queue. 

Then we write the function Process(Item, L), where Item is the record 
QueueItem and L is the length of the fragment. 

In cycling through the list Item.Forms, the current index in the list (cycle 
counter) is stored in Item.Index. In each iteration of the cycle, the following 
steps are performed. 

1. Process(Item.Next, L+1). 
2. If MinLength <= L <= MaxLength, the next steps are performed. 

Otherwise, the processing of the function ends. 
3. Formation of the list WordIDs of forms that include, in sequence, 

Forms[Index], beginning at the start of the Queue, and processing of the L 
elements in the Queue (Current = Begin of the Queue; L is the number of 
repetitions: Current.Forms[Current.Index] is added to WordIDs, Current = 
Current.Next). 

4. Replacement of all the numbers of basic word forms in WordIDs by the 
corresponding numbers in the stop list.  

5. Sorting of WordIDs in ascending order; coding by the Huffman algorithm 
to reduce the size. 

6. Storing of record (ID, P) in the index, using WordIDs as the key. 
 

OPTIMIZATION OF SEARCH-QUERY PROCESSING USING 
EXPANDED INDEXES 

 
The expanded index (w, v) is a list of occurrences of the word w, when word 

v is present in the text at a distance less than ProcessingDistance from w, as 
described in [7] (w – frequently used, v – frequently used or ordinary). The value 
of the parameter ProcessingDistance depends on the frequency of occurrence of 
the word w in texts. We assume that, if the distance between the words is less 



 

than ProcessingDistance, the words are related in meaning, but otherwise they 
are not. 

Note that if an expanded index exists for both words w and v —  that is, if 
indexes (w, v) and (v, w) exist — it is sufficient to create one of them — say, (w, 
v) — and to save the distance between w and v in the posting. By that means, the 
size of the index may be reduced. 
 
EXPANSION OF INFORMATION STORAGE REGARDING STOP 
WORDS IN THE INDEX 

 
In addition to the stop word index and the index for frequently used words, 

we use a basic index.  
All the occurrences of frequently used words and ordinary words are stored 

in the basic index. 
In the basic index, for each word, we may store not only its occurrence but 

also information regarding near stop words, as noted in [7]. This approach may 
be expanded to storage of information regarding stop words that are no further 
than MaxDistance from the word being considered. Experiments show that the 
associated increase in size of the index is acceptable.  

For example, suppose that we select MaxDistance = 5. 
Then we will store all occurrences of the frequently used words and ordinary 

words in the basic index. For each occurrence, we will also store information 
regarding near stop words. 

If the word is frequently encountered, a separate stream may be used to store 
information regarding the stop words. In this case, then, we may have up to 
three streams for the storage of information regarding occurrences of the word. 

1. Storage of the ID of the document + the first occurrence in this document 
+ the number of occurrences in the document.  

2. Other occurrences. 
3. Information regarding the near stop words for each occurrence. 
With this approach, there is no need to read the information regarding the 

stop words if it is irrelevant to the query at hand. 
The first two streams were employed in [7]. On that basis, the same index 

may be used for all searches, regardless of whether the distance is of interest. 
Searches without consideration of the distance are significantly faster, since only 
the first stream is employed, and the number of operations that involve the 
records is an order of magnitude less. For rarely used words, all the data may be 
stored in a single stream. That reduces the number of input/output operations 
required in creating the index. 

 
ANSWERING QUERIES 
 



 

We now consider the fulfillment of various types of queries. In the examples, 
we only mention those streams containing lists of the occurrences of words 
relevant to the search. 

Type 1. All the words in the query are stop words.  
We use the stop word index. We form the key as a sorted list of the IDs of 

stop words (its basic forms) and, on that basis, we extract all the occurrences 
from the index. 

Example 1: not only that but.  
Example 2: which it would be if. 
Type 2. All the words are frequently used. 
Here we consider a query in which there are no stop words and all the words 

are frequently used. 
First, we consider the case where all the words in the query are frequently 

used. In other words, we have an expanded index for each word. 
We select the word wi in the query that is encountered least often in texts. 

Then, to search for the query, it is sufficient to consider n – 1 expanded indexes. 
For each word wk, k != i, we consider the index (wk, wi ). 

Example: rivers define boundaries. 
The word <boundaries> is least often encountered in texts. 
1. (river, boundary): search in the expanded index. 
2. (define, boundary): search in the expanded index.  
3. boundary, define, river: search in the basic index, first occurrence in 

document. 
Here and in what follows, we first take account of the distance (steps 1 and 2 

in the example). Then, if no result is obtained, we disregard the distance (step 3). 
For the search disregarding the distance, we need an index in which only the 
first occurrence of the word in the document is retained. That reduces the 
number of occurrence records by an order of magnitude, as noted in [7]. 

Type 3. Not all of the words are frequently used and there are no stop words. 
We now consider the case where at least one word in the phase is neither a 

stop word nor frequently used. Suppose that the query includes m such words. 
We select the word wi that is encountered least often in texts. We call it the basic 
word in the query. Then, to search for the phrase, it is sufficient to consider n – 
m expanded indexes. For each word wk, k != i, and an expanded index (wk, wi) 
exists we consider the index (wk, wi). In the case of words for which no 
expanded index exists, we use an ordinary index. 

In extracting records from the basic index, information regarding near stop 
words is passed over, if possible (that is, if it is stored in a separate stream). 

 Example: fragrant red rose.  
 Here the word <fragrant> does not appear in the list of frequently used 

words. Two basic forms exist for <rose>: rise, rose. The basic query word is < 
fragrant>. 



 

 1. (red, fragrant): search in the expanded index. 
 2. (rise, fragrant), (rose, fragrant): search in the expanded index. 
 3. fragrant, red, rise, rose: search in the basic index, first occurrence in 

document. 
Type 4. All forms of the word appear in the phrase. 
We proceed as in the previous case. But for the selected basic query word wi, 

we consider all its occurrences and process information regarding near stop 
words in order to take account of stop words appearing in the phase. In that case, 
the basic word in the query may also be a frequently used word. If so, we take 
all its occurrences from the basic index. 

 Example: reports about Gallic war. 
 The stop words in this query are <about> and <war>. <Report> – 

frequently used, <gallic> – ordinary. 
 1. gallic: search for all occurrences with analysis of information regarding 

stop words. 
 2. (gallic, reports): search in the expanded index. 
 The question that arises here is whether to search without taking account 

of the distance, since such a search may not make sense for the stop words. 
Where necessary, this search may be undertaken. 

 In the following example, frequently used words and stop words appear.  
 Example: all necessary things for the walk. 
 The stop words in this query are <all>, <for>, and <the>. 
 1. necessary: search for all occurrences, with analysis of information 

regarding stop words. 
 2. (necessary, thing). 
 3. (necessary, walk). 
  

PROCESSING QUERIES 
 
 For each word in the query, the morphological analyzer gives several 

basic word forms. Thus, for a query consisting of n words, there are n lists of 
basic forms. If one of the lists includes basic forms that differ in the frequency 
type — say, a stop form and a frequently used form — the query must be 
divided into two parts, each of which is processed separately. Otherwise the 
search algorithm is significantly complicated. 

 To explain in more detail, suppose that we have a list Query, each element 
of which is a list of basic word forms. We consider each element of Query. 
Suppose that i is the number of the element considered. If it contains m different 
types of basic forms in terms of the frequency with which they occur, we create 
m copies of the search query, in each of which element i contains only a single 
type of basic form (stop forms, frequently used or ordinal). For each new query, 



 

we proceed analogously, processing element (i + 1) and those that follow. Then 
the results for each query are obtained and combined. 

 
EXPERIMENTS, RESOURCES, AND INITIAL DATA 

 
 All the experiments are conducted using a collection of tests of magnitude 

45 GB. These documents take the form of simple text. In style, they correspond 
mainly to fiction and magazines. In all, we have around 130 000 documents. 

 For the search experiments, we use the following resources.   
 

CPU: Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz.  
HDD: Seagate Barracuda 7200.11, 7200 RPM, cache 32 MB, 2 GB, 
ST32000641AS. 
RAM: 24 GB. 
OS: Microsoft Windows 2008 R2 Enterprise. 

 
 The parameters of the test index are as follows: MinLength = 2, 

MaxLength = 5, MaxDistance = 5–7, depending on the frequency with which 
the word is encountered. 

 We identify 700 stop words that are most commonly encountered. 
Usually, if they are not included in an index, the list of stop words will be as 
short as possible. Since we do include them in an index, this list may be 
relatively long. 

 We have 2100 frequently used words.  
 The given parameters permit searches for phrases with up to five words. 

In the search for longer phrases, containing stop words or frequently used words, 
the phrase may be divided into parts. Each part is then processed separately, and 
the results are combined.  

 
STRUCTURE OF SEARCH EXPERIMENTS 

 
 The experimental procedure is as follows. 
 1. Selection of a random document in the index.  
 2. Selection of search phrases as follows. 
 2.1. Selection of a sequence of words.  
 2.2. Selection of a sequence of words, with the omission of every other 

word. For example, consider a document «Gaul, taken as a whole, is divided 
into three parts…»: we select queries «Gaul taken as» at 2.1 and «Gaul as 
whole» at 2.2, then «taken as a» at 2.1 and «taken a is» at 2.2, and so on. 

 3. Search for each selected set of words. In the search, all the records 
corresponding to the given word are read. Thus, even if the required set of words 
is found, reading continues to the end. 



 

 Sets of three, four, or five words are selected.  
 If one of the query words has a stop basic form, the search is confined to 

sequential words. 
 The basic parameter measured is the number of postings regarding word 

occurrences that are read in processing a single search query. The search rate 
mainly depends on this parameter. After a large number of searches, the mean 
and maximum values of this parameter are determined. The time to process the 
query is also determined. 

 The benefits of this approach are as follows. 
 1. We verify that the index is correctly constructed and performs as 

required. Since phrases are selected from an already-indexed document, they 
should be precisely found. We also verify that the search results include a record 
corresponding to the document used in selecting the query. 

 2. The phrases found are relatively diverse and include a large number of 
different words. Many of the phrases include stop words and frequently 
encountered words. 

 All the queries are processed sequentially in a single program thread. In 
other words, a single processor core is used. 

  
SIZE OF THE INDEXES 

 

Index  Size 

Index used in searches for stop-word phrases 80 GB 

Expanded index used in searches for phases 
including frequently encountered words 

79 GB 

Basic index 67 GB 

Total (all indexes, metadata, compressed 
document texts) 

259 GB 

 
SEARCH SPEED 
 

 In all, 45 000 queries are processed, in 1 h 38 min. All possible types of 
words are encountered in the queries. 

 

Characteristic Mean 
value 

Maximum value 

Time to process query 0.13 s 1.31 s 

Number of queries 
processed 

274 000 6 million 



 

 
 An ordinary index is also constructed for the same data set by means of 

Sphinx 2.0.6 software [14]. The size of the index is 18.7 GB. The same queries 
are processed. 

 

Characteristic Mean 
value 

Maximum value 

Time to process query 1.01 s 17.82 s 

Number of queries 
processed 

112 million 505 million 

 
CONCLUSIONS 

 
 We have proposed methods of organizing additional indexes for stop 

words and frequently encountered words, with a goal to increasing search 
speeds. 

 In experiments, the maximum search time for various phrases that include 
stop words and frequently encountered words is an order of magnitude less 
when using additional indexes than when using ordinary indexes. 

 In experiments regarding the creation of an index that incorporates 
additional indexes of frequently used words, we find that the size of the 
additional indexes, with optimal parameters, is around 250 GB when indexing 
texts of magnitude 45 GB. The increase in index size may be acceptable if the 
search speed is significantly increased. 
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