
Proximity Full-Text Search by Means of Additional

Indexes with Multi-Component Keys: in Pursuit of

Optimal Performance

Alexander B. Veretennikov1()[0000-0002-3399-1889]

1 Ural Federal University, Yekaterinburg, Russia
alexander@veretennikov.ru

This is a pre-print of a contribution
Veretennikov A.B. (2019) Proximity Full-Text Search by Means of Additional
Indexes with Multi-component Keys: In Pursuit of Optimal Performance. In:

Manolopoulos Y., Stupnikov S. (eds) Data Analytics and Management in Data
Intensive Domains. DAMDID/RCDL 2018. Communications in Computer and

Information Science, vol 1003. Springer, Cham

This book constitutes the refereed proceedings of the 20th International Conference
on Data Analytics and Management in Data Intensive Domains, DAMDID/RCDL

2018, held in Moscow, Russia, in October 2018. The 9 revised full papers presented
together with three invited papers were carefully reviewed and selected from 54

submissions.

The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-23584-0_7.

Abstract. Full-text search engines are important tools for information retrieval.
In a proximity full-text search, a document is relevant if it contains query terms
near each other, especially if the query terms are frequently occurring words.
For each word in a text, we use additional indexes to store information about
nearby words that are at distances from the given word of less than or equal to
the MaxDistance parameter. We showed that additional indexes with three-
component keys can be used to improve the average query execution time by up
to 94.7 times if the queries consist of high-frequency occurring words. In this
paper, we present a new search algorithm with even more performance gains.
We consider several strategies for selecting multi-component key indexes for a
specific query and compare these strategies with the optimal strategy. We also
present the results of search experiments, which show that three-component key
indexes enable much faster searches in comparison with two-component key
indexes.

Keywords: Full-Text Search, Search Engines, Inverted Indexes, Additional In-
dexes, Proximity Search, Term Proximity, Information Retrieval.

2

1 Introduction

A search query consists of several words. The search result is a list of documents
containing these words. In [1], we discussed a methodology for high-performance
proximity full-text searches and a search algorithm. With the application of additional
indexes [1], we improved the average query processing time by a factor of 94.7 when
queries consist of high-frequency occurring words.

In this paper, we present the following new results.
We present a new search algorithm in which we can improve the performance even

more than it was improved in [1].
We present the results of search experiments that prove that three-component key

indexes can be used to improve the average query execution time by up to 15.6 times
in comparison with two-component key indexes when queries consist of high-
frequency occurring words.

In modern full-text search approaches, it is important for a document to contain
search query words near each other in order to be relevant to the context of the query,
especially if the query contains frequently occurring words. The impact of the term-
proximity is integrated into modern information retrieval models [2-5].

Words appear in texts at different frequencies. The typical word frequency distri-
bution is described by Zipf’s law [6]. An example of words’ occurrence distribution is
shown in Fig. 1. The horizontal axis represents different words in decreasing order of
their occurrence in texts. On the vertical axis, we plot the number of occurrences of
each word.

The full-text search task can be solved with inverted indexes [7-9]. With ordinary
inverted indexes, for each word in the indexed document, we store in the index the
record (ID, P), where ID is the identifier of the document and P is the position of the
word in the document. Let P be an ordinal number of the word in the document.

For proximity full-text searches, we need to store the (ID, P) record for all occur-
rences of any word in the indexed document. These (ID, P) records are called “post-
ings”.

Fig. 1. Example of a word frequency distribution.

3

Therefore, the query search time is proportional to the number of occurrences of
the queried words in the indexed documents. Consequently, to evaluate a search query
that contains high-frequency occurring words, a search system needs much more time
(see Fig. 1, on the left side) than a query that contains ordinary words (see Fig. 1, on
the right side).

A full-text query is a “simple inquiry”, and accordingly [10], to prevent the inter-
ruption of the thought continuity of the user, the query results must be produced with-
in two seconds. In this context, we present the following problem. It is common to
have a full-text search engine that can usually evaluate a query within 1 sec. of time.
However, it works very slowly, for example, requiring 10-30 sec., for a query that
contains frequently occurring words.

We can illustrate this problem by the following example. We downloaded
pgdvd042010.iso from the Project Gutenberg web page, which contains their files as
of April 2010, and we indexed its content using Apache Lucene 7.4.0 and Apache
Tika 1.18. We indexed approximately 64 thousand documents with a total length of
approximately 13 milliard characters (a relatively small number). We indexed all
words. Then, we evaluated the following queries using the equipment from section
4.1 of the current paper:

"Prince Hamlet"~4 – this search took 172 milliseconds, and
"to be or not to be"~4 – this search took 21 seconds.
The suffix “~4” instructs Lucene to search such texts in which the queried words

contain no more than 4 other words between them.
To improve the search performance, early-termination approaches can be applied

[11-12]. However, early-termination methods are not effective in the case of proximi-
ty full-text searches [1]. It is difficult to combine the early-termination approach with
the integration of term-proximity information into relevance models.

Another approach is to create additional indexes. In [13-14], the authors introduced
some additional indexes to improve the search performance, but they only improved
phrase searches.

With our additional indexes, an arbitrary query can be evaluated very quickly.
In this paper, we present a new and more effective approach that extends the meth-

od from [15]. In the new approach, we try to select the optimal configuration of multi-
component key indexes for a specific query. The major extension is shown in the “3.3
Index selection” section, and the results of new experiments are presented.

2 Lemmatization and Lemma Type

2.1 Word Type

In [16], we defined three types of words.
Stop words: Examples include “and”, “at”, “or”, “not”, “yes”, “who”, “to”, “war”,

“time”, “man” and “be”. In a stop-word approach, these words are excluded from
consideration, but we do not do so. In our approach, we include information about all
words in the indexes.

4

We cannot exclude a word from the search because a high-frequency occurring
word can have a specific meaning in the context of a specific query [1, 14]; therefore,
excluding some words from consideration can induce search quality degradation or
unpredictable effects [14].

Let us consider the query example “who are you who”. The Who are an English
rock band, and “Who are You” is one of their songs. Therefore, the word “Who” has a
specific meaning in the context of this query.

Frequently used words: These words are frequently encountered but convey
meaning. These words always need to be included in the index. Examples include
“beautiful”, “red”, and “hair”.

Ordinary words: This category contains all other words. Examples include “glo-
rious” and “promising”.

2.2 Lemmatization

We employ a morphological analyzer for lemmatization. For each word in the dic-
tionary, the analyzer provides a list of numbers of lemmas (i.e., basic or canonical
forms). For a word that does not exist in the dictionary, its lemma is the same as the
word itself. Some words have several lemmas. For example, the word “mine” has two
lemmas, namely, “mine” and “my”.

We use a combined Russian/English dictionary with approximately 200 thousand
Russian lemmas and 92 thousand English lemmas.

We define three types of lemmas: stop lemmas, frequently used lemmas and ordi-
nary lemmas. We sort all lemmas in decreasing order of their occurrence frequency in
the texts. We call this sorted list the FL-list. The number of a lemma in the FL-list is
called its FL-number. Let the FL-number of a lemma w be denoted by FL(w).

The first SWCount most frequently occurring lemmas are stop lemmas. The second
FUCount most frequently occurring lemmas are frequently used lemmas. All other
lemmas are ordinary lemmas. SWCount and FUCount are the parameters. We use
SWCount = 700 and FUCount = 2100 in the experiments presented.

If an ordinary lemma, q, occurs in the text so rarely that FL(q) is irrelevant, then
we can say that FL(q) = ~. We denote by “~” some large number.

2.3 Index Type

We create indexes of different types for different types of lemmas. Let MaxDistance
be a parameter that can take a value of 5, 7 or even greater.

The expanded (f, s, t) index or three-component key index [1, 17] is the list of oc-
currences of the lemma f for which lemmas s and t both occur in the text at distances
that are less than or equal to the MaxDistance from f.

We create an expanded (f, s, t) index only for the case in which f ≤ s ≤ t. Here, f, s,
and t are all stop lemmas. Each posting includes the distance between f and s in the
text and the distance between f and t in the text.

5

The expanded (w, v) index or two-component key index [18-20] is the list of occur-
rences of the lemma w for which lemma v occurs in the text at a distance that is less
than or equal to the MaxDistance from w.

The lemma types considered are as follows: for w, frequently used, and for v, fre-
quently used or ordinary. Each posting includes the distance between w and v in the
text.

Other types of additional indexes are described in [1].

3 A New Search Algorithm

3.1 The Search Algorithm General Structure

Our search algorithm is described in Fig. 2. Let us consider the search query “who are
you who”. After lemmatization, we have the following query:

[who] [are, be] [you] [who]. The word “are” has two lemmas in our dictionary.
With FL-numbers: [who: 293] [are: 268, be: 21] [you: 47] [who: 293].
To use three-component key indexes, this query must be divided into two

subqueries [1]:
Q1: [who: 293] [are: 268] [you: 47] [who: 293], and
Q2: [who: 293] [be: 21] [you: 47] [who: 293].
We can say that lemma “who” > “you” because FL(who) = 293, FL(you) = 47, and

293 > 47. We use the FL-numbers to establish the order of the lemmas in the set of all
lemmas.

In [1], we defined several query types depending on the types of lemmas that they
contain and the different search algorithms for these query types. The query does not
need to be divided into a set of subqueries for all query types.

In this paper, we consider subqueries that consist only of stop lemmas.
After step 2, we evaluate the subqueries in the loop.
After all subqueries are evaluated, their results need to be combined into the final

result set.

Fig. 2. UML diagram of the search algorithm general structure.

3.2 Subquery Evaluation

The algorithm for the subquery evaluation, when the subquery consists of only stop
lemmas, is described in Fig. 3.

6

We need to select the three-component key indexes required to evaluate the
subquery. For all selected indexes, we need to create an iterator object. The iterator
object for the key (f, s, t) is used to read the posting list of the (f, s, t) key from the
start to the end. The iterator object, IT, has the method IT.Next, which reads the next
record from the posting list.

The iterator object, IT, has the property IT.Value, which contains the current record
(ID, P, D1, D2). Consequently, IT.Value.ID is the ID of the document containing the
key, and IT.Value.P is the position of the key in the document.

For the two postings of A = (A.ID, A.P, A.D1, A.D2) and B = (B.ID, B.P, B.D1,
B.D2), we define that A < B when one of the following conditions is met: A.ID < B.ID
or (A.ID = B.ID and A.P < B.P). The records (ID, P, D1, D2) are stored in the posting
list for the given key in increasing order.

The goal of the Equalize procedure is to ensure that all iterators have an equal val-
ue of Value.ID = DID. Afterwards, we can perform the search in the document with
identifier Value.ID. The Equalize procedure is described in [1].

Fig. 3. UML diagram of a subquery evaluation.

3.3 Index Selection

To evaluate the subquery, we need to select keys for the three-component key index-
es. The key selection can be performed in different ways for different performance
outcomes. We propose now four different approaches. The simple and effective prin-
ciples, which are defined as the second and third approaches below, can significantly
increase performance in comparison with the original first approach.

The First Approach
The first approach is proposed in [15]. The query can be divided into a set of three-
component keys. Let the first three lemmas of the query define the first key. Let the
next three lemmas of the query define the second key, and so on.

For the cases when the length of the query is not an exact multiple of 3, the last key
is always defined by the last three lemmas of the query.

All selected keys must be normalized.

7

For example, let us consider the subquery [who] [are] [you] [who]. We can use the
keys (who, are, you) and (are*, you*, who).

For any three stop lemmas, f, s and t, we have the (f, s, t) index only for the case in
which f ≤ s ≤ t. We call the (f, s, t) key with the aforementioned condition the normal-
ized key. The normalized keys here are (you, are, who) and (you*, are*, who).

Let us consider the search query “Who are you and why did you say what you did”
and its subquery [who] [are] [you] [and] [why] [do] [you] [say] [what] [you] [do].

In fact, we can find this query in Cecil Forester Scott’s novel “Lord Hornblower”.
We can use the (who, are, you), (and, why, do), (you, say, what), and (what*, you,

do) indexes. The normalized keys are (you, are, who), (and, do, why), (you, what,
say), and (you, what*, do). We mark “what” by “*” in the last key to denote that this
lemma has already been taken into account by a previous key.

The Second Approach
The idea of the second approach is the following. Let query Q be a list of lemmas. In
any case, we need to use the most frequently occurring lemma for a component of a
three-component key. This lemma will be the first component of the first key. How-
ever, we can minimize the number of postings to read by selecting the least frequently
occurring lemmas, which we can find in the query, as the other two components of the
key. After we form the first key, we can apply the aforementioned logic to select the
following key using the remaining lemmas of the query, etc.

When we form a key, we always need to select the lemmas at different indexes in
Q. For this, we will “mark” an item of the Q as “used” when we select it.

We perform the following steps in the loop.

1. If all elements of Q are “used”, then we break the loop.
2. We select a lemma f with index x in the Q with the following conditions:

a. x is not used,
b. lemma f is the most frequently occurring lemma that satisfies the previous con-

dition.
3. We mark x as “used”.
4. We try to select a lemma s with index y in the query with the following conditions:

a. y is not used,
b. s is the least frequently occurring lemma that satisfies the previous condition.

5. If we cannot select a lemma in the previous step, then we select lemma s with in-
dex y in the query with the following conditions (additionally, s is marked with * in
the key):
a. y is not equal to x.
b. s is the least frequently occurring lemma that satisfies the previous condition.

6. We mark “y” as “used”.
7. We try to select a lemma t with index z in the query with the following conditions:

a. z is not used,
b. t is the least frequently occurring lemma that satisfies the previous condition.

8

8. If we cannot select a lemma in the previous step, then we select lemma t with index
z in the query with the following conditions (additionally, t is marked with * in the
key):
a. x is not equal to z, and y is not equal to z.
b. t is the least frequently occurring lemma that satisfies the previous condition.

9. We mark z as “used”.
10. We create a three-component key (f, s, t) and include it in the list of keys.

We present two examples of the second approach.
Let us consider the subquery SQ1 = [who] [are] [you] [who].
With FL-numbers, we have the following: [who: 293] [are: 268] [you: 47] [who:

293].
We select “you” as the first component of the key because it is not “used” and has

the most occurrence frequency in the texts, that is, the lowest FL-number of 47.
Then, we select “who” as the second component of the key and “who” as the third

component of the key. We have the key (you, who, who) and the normalized key
(you, who, who). The indexes 0, 2 and 3 are used.

Then, we select the remaining “are” as the first component of the second key. All
of the indexes are “used” now. Thus, we select “who” and the second “who” as the
second and the third components, respectively, and we have the (are, who*, who*)
key.

Let us consider the subquery SQ2 of another query = [who] [are] [you] [and] [why]
[do] [you] [say] [what] [you] [do].

With FL-numbers we have the following: [who: 293] [are: 268] [you: 47] [and: 28]
[why: 528] [do: 154] [you: 47] [say: 165] [what: 132] [you: 47] [do: 154].

We select “and: 28” as the first component of the first key and “why: 528” and
“who: 293” as the second and the third components, respectively. Then we select
“you: 47”, “are: 268”, and “say: 165” for the second key. Then, we select “you: 47”,
“do: 154”, and “do: 154” for the third key. Then we select “you: 47”, “what: 132”,
and “why*: 528” for the last key. The normalized keys are (and, who, why), (you,
say, are), (you, do, do), and (you, what, why*).

It is important to remember that we need to divide the query into parts if we have
an index with a small MaxDistance value. Any part of the divided query must have a
length that is less than or equal to the MaxDistance. To evaluate the subquery SQ2
without division, we need at least a MaxDistance = 11.

If we consider the discussion about relevance from [21], then the lengths of the
parts must be less than the MaxDistance to some extent. For example, if the MaxDis-
tance = 5, then we can limit the length of each part by the number 4, and we can con-
sider the following division: [[who] [are] [you] [and]], [[why] [do] [you] [say]],
[[what] [you] [do]]. Each of the parts must be independently evaluated, and after that,
the results of these evaluations must be combined.

The Third Approach
We have an important observation regarding the second approach. When we select

a high frequently occurring lemma as the first component of the key and some less

9

frequently occurring lemma as the other component of the key, this can significantly
reduce the number of the postings to read. In the second approach, we select both the
second and the third components of the key as the least frequently occurring lemmas.
However, what if the query contains several high frequently occurring lemmas and a
small number or even only two relatively low frequently occurring lemmas? In this
case, it may be useful to not “spend” all of the least frequently occurring lemmas for
the one key but to distribute them somehow between several keys.

In the first step, we determine the number of required keys. Let us have a subquery
of length n. We need k = n / 3 indexes, which number we need to round up. The query
is a list of lemmas; thus, each item of the list has its index in the list. For any compo-
nent of each key, we need to select an index of a lemma in the query. When we select
an index for a specific key, we “mark” the index as “used”; thus, it cannot be used for
another key.

For each key, we perform the following. We select the most frequently occurring
unmarked lemma in the subquery as the first component of the key, and the least fre-
quently occurring unmarked lemma in the subquery as the third component of the
key. We perform this for all of the keys. Then, we must select the second component
for every key.

For each key we perform the following. If we have “unmarked” indexes, then we
select the least frequently occurring unmarked lemma in the subquery as the second
component of the key; otherwise, we select the least frequently occurring lemma in
the subquery, whose index is not used by any component of the current key (in the
latter case, the component of the key is marked with *).

Let us consider SQ2 again. We need to define four keys.
In the first step, we define the first and the third components for each key.
We select “and: 28” as the first component of the first key and “why: 528” as the

third component of the first key. We select “you: 47” and “who: 293” for the second
key and “you: 47” and “are: 268” for the third key. We select “you: 47” and “say:
165” for the last key.

Then, we select “do: 154” as the second component for the first key. We select
“do: 154” for the second key, “what: 132” for the third key and “why*: 528” for the
last key. The normalized keys are (and, do, why), (you, do, who), (you, what, are),
and (you, say, why*).

The Fourth Approach and Analysis

In the fourth approach, we consider all possible variants of key selection. In this ap-
proach, we need the ability, which we have, to estimate the count of postings for any
three-component key. In this case, if we consider all possible variants of the key se-
lection, we can select an optimal variant of the key selection (with the least number of
postings to read that is required for the query evaluation).

The problem of this approach is as follows. With an increase in the length of the
query, the number of variants for the key selection increases very quickly. However,
this approach can be used for short queries and for analysis of optimality of other
approaches.

10

In [15], we presented results for the first approach. In this new paper we present re-
sults for the other approaches, which are more promising.

We postpone for now the question of how to work with duplicates among the lem-
mas of the query.

The presented approaches can be applied not only for three-component key indexes,
but also for n-component key indexes, n > 3, if they are needed. They can also be
used in a reduced way for 2-component indexes.

3.4 Search in the Document

The algorithm of searching in the document is described in Fig. 4.
Let DID be an argument of the “Search in the document” procedure. Let us define

that DID is the identifier of the current document.
The main difference between the search algorithm from [1] and the new search al-

gorithm is described here.
For any lemma in the search query, we create an intermediate list of postings in

memory. For example, let us consider the three-component index (you, are, who) and
its iterator object. We create three intermediate posting lists: IL(you), IL(are), and
IL(who). To fill these intermediate posting lists, we need to read postings from the
(you, are, who) iterator object.

A record from the (you, are, who) iterator object has the format (ID, P, D1, D2),
where ID is the identifier of the document, P is the position of “you” in the document,
D1 is the distance from “are” to “you” in the text, and D2 is the distance from “who”
to “you” in the text.

If the lemma “are” occurs in the text after the lemma “you”, then D1 > 0; other-
wise, D1 < 0.

If the lemma “who” occurs in the text after the lemma “you”, then D2 > 0; other-
wise, D2 < 0.

We need to read from the iterator object all records with ID = DID.
We can produce three records from the (ID, P, D1, D2) record.
We need to store the (P) record in the IL(you) intermediate posting list.
We need to store the (P + D1) record in the IL(are) intermediate posting list.
We need to store the (P + D2) record in the IL(who) intermediate posting list.
Let us consider the key (you, what*, do) with a lemma marked by “*”. In this case,

we create only two intermediate posting lists, namely, IL(you) and IL(do). The
(what*) component is already taken into account by a previous key.

For each lemma of the subquery, since we have the intermediate posting list, the
search is straightforward and similar to the search in the ordinary inverted file.

Additionally, an intermediate posting list is a kind of iterator object. The interme-
diate posting list object, IL, has the method IL.Next, which reads the next record from
the posting list.

The intermediate posting list object, IL, has the property IL.Value, which contains
the current record (P), where P is the position of its lemma in the document.

Let IL.Value be equal to SIZE_MAX when all records are read from the IL object,
where SIZE_MAX is some large number.

11

Fig. 4. UML diagram of searching in a document.

In the loop, we perform the following steps.

1. Let MinIL be the intermediate posting list with a minimum value of Value.
2. Let S = MinIL.Value.
3. Let MaxIL be the intermediate posting list with a maximum value of Value.
4. Let E = MaxIL.Value.
5. If there are no more records in MinIL, then exit from the search.
6. Execute MinIL.Next().
7. If MinIL.Value > E, then execute Process(S, E).
8. Go to step 1.

The Process(S, E) procedure adds the (DID, S, E) record into the result set. S is the
position of the start of the fragment of text within the document that contains the que-
ry. E is the position of the end of the fragment of text within the document that con-
tains the query.

3.5 Intermediate Posting List Data Ordering

The records (P) must be stored in an intermediate posting list for the given lemma in
increasing order. For this requirement, the following problem arises.

Consider the text “to be or not to be or”. Let the position of a word in the text be its
ordinal number starting with zero. When we create the three-component key index,
the following records must be stored for the key (to, be, or). The records in the format
(position of “to”, position of “be”, position of “or”) are presented below.

(to, be, or): (0, 1, 2), (0, 5, 6), (4, 1, 2), and (4, 5, 6).
From this posting list, we can create the following three intermediate posting lists.
(to): 0, 0, 4, 4; (be): 1, 5, 1, 5; and (or): 2, 6, 2, 6.

12

Only for the first component of the key is the intermediate posting list ordered in
increasing order.

Please note that the postings in the three-component key index will actually be en-
coded in the (ID, P, D1, D2) format. For the (to, be, or) key, we will write the follow-
ing posting list: (to, be, or): (ID, 0, 1, 2), (ID, 0, 5, 6), (ID, 4, –3, –2), and (ID, 4, 1, 2).

To solve the aforementioned problem, we create two binary heaps [22]. We create
the first binary heap for the second component of the key. We create the second bina-
ry heap for the third component of the key.

Therefore, we will create the (be) binary heap and the (or) binary heap.
We limit the binary heap length by MaxDistance × 2.
When we need to read postings from the (to, be, or) posting list, we perform the

following in a loop.

1. Read the next posting (ID, P, D1, D2) from the posting list (to, be, or).
2. Write (P) into the (to) intermediate posting list.
3. Write (P + D1) into the (be) binary heap.
4. Let M be the first (the minimum element) of the (be) binary heap. If the length of

the (be) binary heap is greater than MaxDistance × 2 or if the distance between M
and the new element (P + D1) is greater than MaxDistance × 2, then remove the
first element from this binary heap, and write it into the (be) intermediate posting
list.

5. Write (P + D2) into the (or) binary heap.
6. Let M be the first (the minimum element) of the (or) binary heap. If the length of

the (or) binary heap is greater than MaxDistance × 2 or if the distance between M
and the new element (P + D2) is greater than MaxDistance × 2, then remove the
first element from this binary heap, and write it into the (or) intermediate posting
list.

7. Go to step 1.

Let us consider a key (f, s, t) and its posting list, L. We create three intermediate
posting lists and two binary heaps to proceed as follows.

1. Intermediate posting list F for f.
2. Intermediate posting list S and binary heap SH for s.
3. Intermediate posting list T and binary heap TH for t.

Let us introduce the methods PopMin, Min and Length of a binary heap object. The
PopMin method returns the minimum element from the binary heap and removes this
element from the binary heap. The Length method returns the length of the binary
heap. The Min method returns the minimum element from the binary heap but does
not change the binary heap.

In Fig. 5, we present the UML diagram of the posting list L reading process.
After all postings from L are read, we need to write all elements from the binary

heaps to their intermediate posting lists.

13

Fig. 5. UML diagram of the posting list reading process.

3.6 Advantages of the New Algorithm

The new algorithm may require a smaller amount of posting lists to evaluate a search
query in comparison with the algorithm from [1] and, therefore, provides faster
searches. It also allows for a more flexible key selection.

3.7 Computational Complexity

Let Q be a subquery of m lemmas. Let n be the total number of postings to read for
the query evaluation.

For each posting, we need to use it in the Equalize procedure. In [1], the author
states that the cost of such usage is O(log(m)).

For each posting, we need to add it to the three intermediate posting lists. The cost
of this process is O(log(MaxDistance)) (see section 3.5).

For each posting, we need to use it when searching in a document. The cost of this
process is O(log(m)) (see section 3.4).

The final cost of the subquery evaluation is
O(n ∙ (log(m) + log(MaxDistance)) = O(n ∙ log (max(m, MaxDistance))).

4 Search Experiments

4.1 Search Experiment Environment

All search experiments were conducted using a collection of texts from [1]. The total
size of the text collection was 71.5 GB. The text collection consisted of 195 000 doc-
uments of plain text, fiction and magazine articles. We used MaxDistance = 5,
SWCount = 700, and FUCount = 2100. The search experiments were conducted using
the experimental methodology from [1].

14

We assume that in typical texts, words are distributed similarly, in accordance with
Zipf’s law [6]. Therefore, the results obtained with our text collection will be relevant
to other collections.

We used the following computational resources:
CPU: Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz.
HDD: 7200 RPM. RAM: 24 GB.
OS: Microsoft Windows 2008 R2 Enterprise.
We created the following indexes.
Idx1: the ordinary inverted index without any improvements, such as NSW records

[1, 19]. The total size was 95 GB.
Idx2: our indexes, including the ordinary inverted index with the NSW records and

the (w, v) and (f, s, t) indexes, where MaxDistance = 5. The total size was 746 GB.
Please note that the total size of each type of index includes the size of the reposi-

tory (indexed texts in compressed form), which was 47.2 GB.

4.2 Search Results

There are 975 queries, and all queries consisted only of stop lemmas. The query set
was selected as in [1]. All searches were performed in a single program thread. We
searched all queries from the query set with different types of indexes to estimate the
performance gains of our indexes. The query length was from 3 to 5 words.

Studies by Jansen et al. [23] have shown that queries with lengths greater than 5
are very rare. In [23], query logs of a search system were analyzed, and it was estab-
lished that queries with a length of 6 represent approximately 1% of all queries and
that fewer than 4% of all queries had more than 6 terms.

We performed the following experiments.
SE1: all queries are evaluated using the standard inverted index Idx1.
SE2.1: all queries are evaluated using Idx2 and the algorithm from [1].
SE2.2: all queries are evaluated using Idx2, the novel algorithm presented in this

paper and that in [15] with the key selection based on the first approach.
SE2.3: all queries are evaluated using Idx2 and the novel algorithm presented in

this paper with the key selection based on the second approach.
SE2.4: all queries are evaluated using Idx2 and the novel algorithm presented in

this paper with the key selection based on the third approach.
SE2.5: all queries are evaluated using Idx2 and the novel algorithm presented in

this paper with the key selection based on the fourth approach.
Average query times:
SE1: 31.27 sec., SE2.1: 0.33 sec., SE2.2: 0.29 sec., SE2.3: 0.24 sec., SE2.4: 0.24

sec., and SE2.5: 0.27 sec.
Average data read sizes per query:
SE1: 745 MB, SE2.1: 8.45 MB, SE2.2: 6.82 MB, SE2.3: 6.2 MB, SE2.4: 6.16 MB,

and SE2.5: 5.79 MB.
Average numbers of postings per query:
SE1: 193 million, SE2.1: 765 thousand, SE2.2: 559 thousand, SE2.3: 423 thou-

sand, SE2.4: 419 thousand, and SE2.5: 411 thousand.

15

We improved the query processing time by a factor of 94.7 with the SE2.1 algo-
rithm, by a factor of 107.8 with the SE2.2 algorithm, and by a factor of 130 with the
SE2.3 and SE2.4 algorithms (see Fig. 6).

In SE2.5 we observed a slight increase in the average query execution time, be-
cause this time includes checking all the possible combinations of the three-
component key selection. We used the SE2.5 results only for analysis of the effec-
tiveness of SE2.3, and SE2.4 in relation to SE2.2 (see later); therefore, SE2.5 is ex-
cluded from Fig. 6.

Fig. 6. Average query execution times for SE1, SE2.1, SE2.2, SE2.3, and SE2.4 (in seconds).

The left-hand bar shows the average query execution time with the standard invert-
ed indexes. The subsequent bars show the average query execution times with our
indexes using the SE2.1, SE2.2, SE2.3 and SE2.4 algorithms. Our bars are much
smaller than the left-hand bar because our searches are very quick.

We improved the data read size per query by a factor of 88 with SE2.1, by a factor
of 109.2 with SE2.2 and by a factor of 120 with SE2.3 and SE2.4 (see Fig. 7).

Fig. 7. Average data read sizes per query for SE1, SE2.1, SE2.2, SE2.3 and SE2.4 (MB).

The left-hand bar shows the average data read size per query for SE1. The subse-
quent bars show the average data read size per query for SE2.1, SE2.2, SE2.3 and
SE2.4.

We show how SE2.3 and SE2.4 outperform SE2.2 in Fig. 8.

16

Fig. 8. Average query execution times for SE2.1, SE2.2, SE2.3 and SE2.4 (in seconds).

We show the average number of postings to read per query for SE2.1, SE2.2,
SE2.3, SE2.4 and SE2.5 in Fig. 9. We observe that SE2.3 and SE2.4 have similar
effectiveness in comparison with SE2.5, which is the optimal key selection. We also
observe how SE2.3 and SE2.4 outperform the original SE2.2 method.

SE2.3 and SE.2.4 have equal performance on average; however, we have examples
of queries that have significantly different execution times for the SE2.3 and SE2.4
approaches. If we have information about the posting list length for every key, then it
will be good to quickly check both SE2.3 and SE2.4 strategies before evaluating a
specific query.

Fig. 9. Average numbers of postings to read per query for SE2.1, SE2.2, SE2.3, SE2.4 and
SE2.5 (in thousands).

4.3 Comparison Between Three-Component Key Indexes and Two-
Component Key Indexes

We created another additional index especially for this experiment.
Idx3: two-component key indexes (w, v), where MaxDistance = 5, SWCount = 0,

and FUCount = 700. The total index size is 275 GB.
In this case, for any two lemmas, w and v, where w ≤ v, FL(w) < 700, and FL(v) <

700, we have a two-component key index (w, v).
Each posting in this index includes the distance between w and v in the text.
Such w and v lemmas are stop lemmas for Idx2.
We performed the following experiment:

17

SE3: all 975 aforementioned queries were evaluated using Idx3, and the new algo-
rithm presented in this paper is adapted for two-component key indexes.

In SE3, we processed the same query set that we already processed in SE2.1,
SE2.2, SE2.3, and SE2.4, but we used two-component key indexes instead of three-
component key indexes.

Average query times: SE3: 3.75 sec. (see Fig. 10).
Average data read sizes per query: SE3: 105.17 MB.
Average number of postings per query: SE3: 12 million 761 thousand.
In this experiment, we compared SE2.1, SE2.2, SE2.3 and SE2.4 against SE3. We

improved the query processing time by a factor of 11.36 with the SE2.1 algorithm, by
a factor of 12.93 with the SE2.2 algorithm, and by a factor of 15.6 with SE2.3 and
SE2.4 in comparison with the two-component key index (SE3) case (see Fig. 10).

Fig. 10. Average query execution times for SE2.1, SE2.2, SE2.3, SE2.4 and SE3 (in seconds).

The left-hand bar shows the average query execution time with the three-
component key indexes using the algorithm from [1]. The three center bars show the
average query execution time with the three-component key indexes using the new
algorithm described in this paper. The right-hand bar shows the average query execu-
tion time with the two-component key indexes.

The bars that related to the three-component key indexes are much smaller than the
right-hand bar because the three-component key indexes enable much quicker search-
es than the two-component key indexes.

This experiment shows that three-component key indexes by an order of magni-
tude are more effective than the two-component indexes when the queries that con-
sist of stop lemmas are evaluated.

We improved the data read size per query by a factor of 12.44 with SE2.1, by a
factor of 15.42 with SE2.2 and by a factor of 16.96 with SE2.3 and SE2.4 in compari-
son with the two-component key index (SE3) case (see Fig. 11).

18

Fig. 11. Average data read sizes per query for SE2.1, SE2.2, SE2.3, SE2.4 and SE3 (MB).

The left-hand bar shows the average data read size per query with SE2.1. The sub-
sequent bars show the average data read size per query with SE2.2, SE2.3, SE2.4 and
SE3.

Fig. 12. Average query execution times for SE1, SE2.1, SE2.2, SE2.3, SE2.4 and SE3 (in se-
conds).

We show the average query execution time for all experiments in Fig. 12.
The left-hand bar shows the average query execution time with the standard invert-

ed indexes. The four subsequent bars show the average query execution times with
the three-component key indexes for the SE2.1, SE2.2, SE2.3 and SE2.4 algorithms.
The right-hand bar shows the average query execution time with the two-component
key indexes in the SE3 experiment.

5 Conclusion and Future Work

A query that contains high-frequency occurring words induces performance problems.
To solve these performance problems and to satisfy the fastidious demands of the
users, we developed and elaborated three-component key indexes.

In this paper, we investigated searches with queries that contain only stop lemmas.
Other query types were studied in [18-19, 21]. As we discussed in [1], three-
component key indexes are an important and integral part of our comprehensive full-
text search methodology, which comprises three-component key index search meth-
ods and other search methods from [18-19, 21].

19

In this paper, we have introduced an optimized algorithm for full-text searches in
comparison with [1]. These algorithms are novel, and no alternative implementations
exist. We have analyzed different strategies for multi-component key selection for a
specific query in pursuit of the best and optimal strategy.

We have presented the results of experiments showing that when queries contain
only stop lemmas, the average time of the query execution with our indexes is 130
times less (with the MaxDistance = 5) than that required when using ordinary inverted
indexes.

We have presented the results of experiments showing that when queries contain
only stop lemmas, the average time of the query execution with our indexes is 15.6
times less (with the MaxDistance = 5) than that required when using two-component
key indexes.

Using the last experiment, we diligently prove that three-component indexes are
stupendous and cannot be replaced by two-component key indexes. This is the reason
why we implemented three-component indexes to solve the full-text search task.

In the future, it will be interesting to investigate other types of queries in more de-
tail and to optimize index creation algorithms for larger values of MaxDistance. It
will also be important to investigate how the proposed indexing structure can be used
by modern ranking algorithms. The author assumes that based on Zipf’s law [6], our
test text collection is sufficient and acceptable for evaluating search performance.
Nevertheless, to investigate ranking algorithms’ behavior we plan to use collections,
such as TREC GOV and GOV2, which are intended to analyze search quality.

References

1. Veretennikov, A.B.: Proximity full-text search with response time guarantee by means of
three component keys. Bulletin of the South Ural State University. Series: Computational
Mathematics and Software Engineering. 7(1), 60–77 (2018) (in Russian). doi:
10.14529/cmse180105.

2. Buttcher, S., Clarke, C., Lushman, B.: Term proximity scoring for ad-hoc retrieval on very
large text collections. In: SIGIR’2006, pp. 621–622. doi: 10.1145/1148170.1148285.

3. Rasolofo, Y., Savoy, J.: Term proximity scoring for keyword-based retrieval systems. In:
European Conference on Information Retrieval (ECIR) 2003: Advances in Information Re-
trieval, pp. 207–218 (2003). doi: 10.1007/3-540-36618-0_15.

4. Schenkel, R., Broschart, A., Hwang, S., Theobald, M., Weikum, G.: Efficient text proximi-
ty search. In: String processing and information retrieval. 14th International Symposium.
SPIRE 2007. Lecture notes in computer science, vol. 4726, Santiago de Chile, Chile, 29–
31 October 2007, pp. 287–299. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-
75530-2_26.

5. Yan, H., Shi, S., Zhang, F., Suel, T., Wen, J.-R.: Efficient term proximity search with
term-pair indexes. In: CIKM 2010 Proceedings of the 19th ACM International Conference
on Information and Knowledge Management, Toronto, ON, Canada, 26-30 October 2010,
pp. 1229–1238 (2010). doi: 10.1145/1871437.1871593.

6. Zipf, G.: Relative frequency as a determinant of phonetic change. Harvard Studies in Clas-
sical Philology. 40, 1–95 (1929). doi: 10.2307/408772.

20

7. Luk R. W. P.: Scalable, statistical storage allocation for extensible inverted file construc-
tion. Journal of Systems and Software, 84(7), 1082-1088 (2011). doi:
10.1016/j.jss.2011.01.049.

8. Tomasic, A., Garcia-Molina, H., Shoens, K.: Incremental updates of inverted lists for text
document retrieval. In: SIGMOD 1994 Proceedings of the 1994 ACM SIGMOD Interna-
tional Conference on Management of Data. Minneapolis, Minnesota, 24–27 May 1994, pp.
289–300 (1994). doi: 10.1145/191839.191896.

9. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM computing surveys,
2006, 38(2), Article 6. doi: 10.1145/1132956.1132959.

10. Miller, R.B.: Response time in man-computer conversational transactions. In Proceedings:
AFIPS Fall Joint Computer Conference. San Francisco, California, 09-11 December 1968,
vol 33, pp. 267–277 (1968). doi: 10.1145/1476589.1476628.

11. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early termina-
tion. In: SIGIR 2001 Proceedings of the 24th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, New Orleans, Louisiana,
USA, 9–12 September 2001, pp. 35–42 (2001). doi: 10.1145/383952.383957.

12. Garcia, S., Williams, H.E., Cannane, A.: Access-ordered indexes. In: ACSC 2004 Proceed-
ings of the 27th Australasian Conference on Computer Science, Dunedin, New Zealand,
18–22 January 2004, pp. 7–14 (2004).

13. Bahle, D., Williams, H.E., Zobel, J.: Efficient phrase querying with an auxiliary index. In:
SIGIR 2002 Proceedings of the 25th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. Tampere, Finland, 11–15 August 2002,
pp. 215–221 (2002). doi: 10.1145/564376.564415.

14. Williams, H.E., Zobel, J., Bahle, D.: Fast phrase querying with combined indexes. ACM
Transactions on Information Systems (TOIS), 22(4), 573–594 (2004). doi:
10.1145/1028099.1028102.

15. Veretennikov, A.B. Proximity full-text search with a response time guarantee by means of
additional indexes with multi-component keys. Selected Papers of the XX International
Conference on Data Analytics and Management in Data Intensive Domains
(DAMDID/RCDL 2018), Moscow, Russia, October 9-12 2018, 123-130 (2018),
http://ceur-ws.org/Vol-2277.

16. Veretennikov, A.B.: O poiske fraz i naborov slov v polnotekstovom indekse (About
phrases search in full-text index). Control systems and information technologies, 48(2.1):
125–130 (2012). In Russian

17. Veretennikov, A.B.: Effektivnyi polnotekstovyi poisk s uchetom blizosti slov pri pomosh-
chi trekhkomponentnykh klyuchei (Efficient full-text proximity search by means of three
component keys). Control systems and information technologies, 69(3), 25–32 (2017). In
Russian

18. Veretennikov, A.B.: Ispol'zovanie dopolnitel'nykh indeksov dlya bolee bystrogo
polnotekstovogo poiska fraz, vklyuchayushchikh chasto vstrechayushchiesya slova (Using
additional indexes for fast full-text searching phrases that contains frequently used words).
Control Systems and Information Technologies, 52(2), 61–66 (2013). In Russian

19. Veretennikov, A.B.: Effektivnyi polnotekstovyi poisk s ispol'zovaniem dopolnitel'nykh in-
deksov chasto vstrechayushchikhsya slov (Efficient full-text search by means of additional
indexes of frequently used words). Control Systems and Information Technologies, 66(4),
52–60 (2016). In Russian

20. Veretennikov, A.B.: Sozdanie dopolnitel'nykh indeksov dlya bolee bystrogo
polnotekstovogo poiska fraz, vklyuchayushchikh chasto vstrechayushchiesya slova (Creat-

21

ing additional indexes for fast full-text searching phrases that contains frequently used
words). Control systems and information technologies, 63(1), 27–33 (2016) (In Russian).

21. Veretennikov, A.B.: Proximity full-text search with a response time guarantee by means of
additional indexes. In: Arai K., Kapoor S., Bhatia R. (eds) Intelligent Systems and Appli-
cations. IntelliSys 2018. Advances in Intelligent Systems and Computing, vol 868, pp 936-
954 (2019). Springer, Cham. doi: 10.1007/978-3-030-01054-6_66.

22. Williams J.W.J.: Algorithm 232 – Heapsort. Communications of the ACM. 7(6), 347–348,
(1964).

23. Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users and real needs: A study and
analysis of user queries on the Web. Information Processing and Management, 36(2), 207–
227 (2000). doi: 10.1016/S0306-4573(99)00056-4.

See also

Veretennikov A. B. Using Additional Indexes for Fast Full-Text Searching Phrases
that Contain Frequently Used [Control Systems and Information Technologies]. 2013.
vol. 52, no. 2. pp. 61-66, In Russian.
http://veretennikov.org/CLB/Data/clb5en.pdf

Veretennikov A.B. (2019) Proximity Full-Text Search with a Response Time Guaran-
tee by Means of Additional Indexes. In: Arai K., Kapoor S., Bhatia R. (eds) Intelli-
gent Systems and Applications. IntelliSys 2018. Advances in Intelligent Systems and
Computing, vol 868, pp 936-954. Springer, Cham
https://doi.org/10.1007/978-3-030-01054-6_66
http://veretennikov.org/CLB/Data/IntelliSys_2018_ProximityAddInd.pdf

Veretennikov A.B. Proximity full-text search with a response time guarantee by
means of additional indexes with multi-component keys. Selected Papers of the XX
International Conference on Data Analytics and Management in Data Intensive Do-
mains (DAMDID/RCDL 2018), Moscow, Russia, October 9-12 2018, 123-130 (2018)
http://ceur-ws.org/Vol-2277
http://veretennikov.org/CLB/Data/DAMDID_2018.pdf

