Proximity full-text searches of frequently
occurring wordswith a response time guarantee

Alexander B. Veretennikov

This is a pre-print of a contribution published in Pinelask®m A., Vlasov V. (eds)
Mathematical Analysis With Applications. CONCORD-90 20$®ringer Proceed-
ings in Mathematics & Statistics, vol 318, published by 8ger, Cham. The final
authenticated version is available online at:
https://doi.org/10.1007/978-3-030-421762.

Abstract Full-text search engines are important tools for informratietrieval. In
a proximity full-text search, a document is relevant if int@ns query terms near
each other, especially if the query terms are frequentlyioogy words. For each
word in the text, we use additional indexes to store inforomeébout nearby words
at distances from the given word of less than or equislagDistance, which is a pa-
rameter. A search algorithm for the case when the query s high-frequently
used words is discussed. In addition, we present resultspafranents with differ-
ent values oMaxDigtance to evaluate the search speed dependence on the value of
MaxDigtance. These results show that the average time of the query ézaauith
our indexes is 94.7-45.9 times (depending on the valldaDistance) less than
that with standard inverted files when queries that contgin-frequently occurring
words are evaluated.

1 Introduction

A search query consists of several words. The search resaltist of documents
containing these words. In [10], we discussed a methoddtmgyigh-performance
proximity full-text searches and a search algorithm. Irs théper, we present an
optimization of this algorithm and the results of the expwmts in dependence on
its primary parameter.

In modern full-text search approaches, it is important fdoaument to contain
search query words near each other to be relevant in thextafitihe query, espe-
cially if the query contains frequently used words. The ictd the term-proximity
is integrated into modern information retrieval models, [398, 7].

Alexander B. Veretennikov
Ural Federal University, 620083, pr. Lenina 51, Yekateung Russia, Chair of Calculation Math-
ematics and Computer Science, INSM, e-mallexander @er et enni kov. ru

https://doi.org/10.1007/978-3-030-42176-2_37
alexander@veretennikov.ru

2 Alexander B. Veretennikov

Words appear in texts at different frequencies. The typicatl frequency distri-
bution is described by Zipf's law [20]. An example of wordsaorence distribution
is shown in Fig. 1. The horizontal axis represents diffevesrds in decreasing order
of their occurrence in texts. On the vertical axis, we plettlumber of occurrences
of each word.

Occurrences

Frequently Not frequently
a, are, war promising, glorious

Fig. 1 Example of a word frequency distribution.

Inverted files orindexes [21, 9] are commonly used for faktisearch data struc-
tures. With ordinary inverted indexes, for each word in thdexed document, we
store in the index the recordD,P), wherelD is the identifier of the document
andP is the position of the word in the document (for example, afir@ num-
ber of the word). For proximity full-text searches, we needtore(ID,P) record
for all occurrences of any word in the indexed document. €3, P) records are
called “postings”. In this case, the query search time ipprtional to the number
of occurrences of the queried words in the indexed docum&atssequently, it is
common for search systems to evaluate queries that comtindntly occurring
words (such as “a@”, “are”, “war” and “who”) much more slowlgge Fig. 1) than
queries that contain less frequently occurring, ordinaosyds (such as “promising”
and “glorious”).

To address this performance problem and to satisfy the désnafirthe users, we
use additional indexes [10, 11, 12, 13, 14, 15, 16].

It is important to evaluate any query with a response timerantee. A full-
text search query that we can consider to be a “simple intjsinpuld produce
a response within two seconds [6]; otherwise, the congnaiftthinking can be
interrupted, which will affect the performance of the user.

Proximity full-text searches of frequently occurring werd 3

1.1 Word Type and Lemmatization

In [11], we defined three types of words.

Stop words: Examples include “and”, “at”, “or”, “not”, “y&s‘who”, “to”, and
“be”. In a stop-words approach, these words are excluded fronsideration, but
we do not do so. In our approach, we include information aladlutvords in the
indexes. We cannot exclude a word from the search becausghafreguently
occurring word can have a specific meaning in the context gbexific query
[10, 17]; therefore, excluding some words from consideratian induce search
quality degradation or unpredictable effects [17]. Letossider the query example
“who are you who". The Who are an English rock band, and “Wteo¥au” is one
of their songs. Therefore, the word “Who” has a specific megim the context of
this query.

Frequently used words: These words are frequently encmchieut convey
meaning. These words always need to be included in the index.

Ordinary words: This category contains all other words.

We employ a morphological analyzer for lemmatization. Facteword in the
dictionary, the analyzer provides a list of numbers of leraifa&., basic or canonical
forms). For a word that does not exist in the dictionary itarea is the same as the
word itself.

We define three types of lemmas: stop lemmas, frequentlylasgdas and ordi-
nary lemmas. We sort all lemmas in decreasing order of tleeinwence frequency
in the texts. This sorted list we call té_-list. The number of a lemma in theL-list
is called itsFL-number. Let thé-L-number of a lemmav be denoted by L (w).

The firstSVCount most frequently occurring lemmas are stop lemmas.

The second=UCount most frequently occurring lemmas are frequently used
lemmas.

All other lemmas are ordinary lemm&&NCount andFUCount are the parame-
ters.

We useSWCount = 700 and=UCount = 2100 in the experiments presented.

If an ordinary lemmay occurs in the text so rarely thet_(q) is irrelevant, then
we can say thatL(q) =~. We denote by ~” some large number.

Let us consider the following text, with the identifidd1: “All was fresh around
them, familiar and yet new, tinged with the beauty ”. Thisnsexcerpt from Arthur
Conan Doyle’s novel “Beyond the City”.

After lemmatization: [all] [be] [fresh] [around] [they]dimiliar] [and] [yet] [new]
[ting, tinge] [with] [the] [beauty].

With FL-numbers: [all: 60] [be: 21] [fresh: 2667] [around: 217 7hdtl: 134]
[familiar: ~] [and: 28] [yet: 632] [new: 376] [ting:, tinge:~] [with: 40] [the: 10]
[beauty:~].

Stop lemmas: “all”, “be”, “they”, “and”, “yet”, “

Frequently used lemmas: “fresh”, “around”.

Ordinary lemmas: “ting”, “tinge”, “beauty”, “familiar”.

In this example we can see that some words have several lenfinasvord
“tinged” has two lemmas, namely, “ting” and “tinge”. Anotrexample is the word

new”, “with”, “the”.

4 Alexander B. Veretennikov

“mine” that has two lemmas, namely, “mine” and “my”, wiEL-numbers of 2482
for “mine” and 264 for “my”.

1.2 Query Type

Let us define the following query types.

QT1) Alllemmas of the query are stop lemmas.

QT2) Alllemmas of the query are frequently used lemmas.

QT3) Alllemmas of the query are ordinary lemmas.

QT4) The query contains frequently used and ordinary lemnhasetare no stop lem-
mas in the query.

QT5) The query contains stop lemmas. The query also contaggséntly used and/or
ordinary lemmas.

We presented the results of experiments [10] while showlrag the average
query execution time with our additional indexes was 941¥%s8 less than that re-
quired when using ordinary inverted files, wh&T1 queries are evaluated. The
experimental query set contained 99% 1 queries, and each was performed three
times. The total search time with ordinary inverted indexas 8 hours 59 minutes.
The total search time with our additional indexes was 6 néis@4 seconds.

Let MaxDistance be a parameter that can take a value of 5 or 7 or even more. In

[10], we presented the results of experiments WidgxDistance = 5.

Before, in [13], we had presented the results of experimghs/ing that the av-
erage number of postings per query with our additional iedexas 51.5 times less
than that required when using ordinary inverted files, whegrigs withQT 2-QT5
types are evaluated (ti@T 1 type is excludedMaxDistance = 5. The experimental
query set contained 593831 2-QT5 queries.

In [13], we also presented the results of experiments stgpiiat the average
number of postings per query with our additional indexes 263 times less than
that required when using ordinary inverted files, when easanithQT 1-QT5 types
are evaluated and when tRF 1 type search is limited by an exact search (that is,
for a QT 1 query, we find only documents that contain all query words mach
other and without other words between, but the query wordsbeain any order
in the indexed documentMaxDistance = 5. This limitation we had overcome in
[10, 16] by introducing a new type of additional index (thhemmponent key index)
for theQT 1 queries. The experimental query set contained 4500 g&vieere 330
areQT 1 queries and 462 af@T 2-QT4 queries.

In this paper, in a continuation of [10], we present the rssofl experiments for
QT1 queries wherMaxDistance = 5, 7 and 9. With these results, we can evalu-
ate the search speed with three-component key indexes depeon the value of
MaxDigtance.

We use different additional indexes depending of the typ@@fjuery [10].

Proximity full-text searches of frequently occurring werd 5

QT1) Three-componentkejf,s t) indexes.

QT2) Two-component keyw,v) indexes.

QT3) Ordinary indexes, skipping NSW (near stop words) recfit@s

QT4) Ordinary indexes with skipping NSW records [10] and tvasnponent key in-
dexes.

QT5) Ordinary indexes with NSW records and two-component kelgxes. For each
frequently used or ordinary lemma in each document, a ref@dP, NSW
record) is included in the ordinary indebD is the ordinal number of the docu-
ment.P is the corresponding word’s ordinal number within the doeamThe
NSW record contains information about all stop lemmas aogmear posi-
tion P (at a distance< MaxDistance). This information is efficiently encoded
[11, 12, 13] and allows to take into account any stop lemmaisdbcurring near
P. The postings for a lemma in the ordinary index can be stometvo data
streams: the first contairikD, P) records, and the second contains NSW records.
In this case, we can skip NSW records when they are not retjuire

2 The Search Algorithm

2.1 The Search Algorithm General Structure

Our search algorithm is described in Fig. 2.
Let us consider the following query: “who are you who”.

Table1 The Search Algorithm General Structure.

Phase Result of the phase

1. Lemmatization. The query after lemmatization:
[who: 293] [are: 268, be: 21] [you: 47] [who: 293].
2. Building Sub Query List Q1: [who: 293] [are: 268], [you: 47] [who: 293].
(if required by the query type). |Q2: [who: 293] [be: 21], [you: 47] [who: 293].
3. Evaluation of the Sub Queri¢Results ofQ1.

Results 0fQ2.

4. Combining results. Combined result set sorted according to relevancy.

Let us consider the phase 3 in more detail. We evaluate theseles in the
loop. We select a non-processed sub query. If no such suly guists, then all sub
queries are processed and we go to the next phase. Othemgis¥aluate the sub
query and go to the start of the loop.

Results of a sub query are the list of recoft®, P, E,R). ID is the identifier
of the documentP is the position of the start of the fragment of text within the
document that contains the queyis the position of the end of the fragment of text
within the document that contains the queRys the relevance of the record.

6 Alexander B. Veretennikov

!

[1. Lemmatization j

[2. Building Sub Query List j

4. Combining
Results

All sub queries

are processed

[3. Evaluate the Sub Query]

Fig. 2 UML diagram of the query evaluation procedure.

In [10], we defined several query types depending on the tgpsmmas they
contain and different search algorithms for these quergsyfn this paper, we con-
sider sub queries that consist only of stop lemmas.

2.2 Evaluation of a Sub Query that Consists only of Stop Lemmas

To evaluate a sub query that consists only of stop lemmasetbomponent key
indexes are used.

The expandedf,s,t) index or three-component key index [10] is the list of oc-
currences of the lemmfafor which lemmasandt both occur in the text at distances
less than or equal thlaxDistance from f.

For the sub quer®1, we can use the (you, are, who) and (you, who, who) in-
dexes. The algorithm for the index selection is describgd0h

For each selected index, we need to create the iterator.

The iterator object for the kejf, s,t) is used to read the posting list of thig s;t)
key from the start to the end.

The iterator objeckT has the methodT.Next, which reads the next record from
the posting list.

Proximity full-text searches of frequently occurring werd 7

The iterator objectT has the propertyT.Val ue that contains the current record
(ID,P). Consequently, T.Value.ID is thelD of the document containing the key,
and| T.Value.P is the position of the key in the document.

For two postingsA = (A.ID,A.P) andB = (B.ID,B.P), we define thalA < B
when one of the following conditions are métiD < B.ID or; (A.ID = B.ID and
AP <B.P).

The recordg1D, P) are stored in the posting list for the given key in increasing
order.

The evaluation of the sub query that consists only of stopiam[10] is shown
accordingly in Fig. 3. Broadly speaking, the evaluationts sub query is a two
level process that is incorporated into the loop (steps 3dl3a2).

A
1. Selection of

Indexes

R

2. Creation of
Tterators All posting lists

3.1. Equalize
3.2. Searching in

the Document \/‘
\

1 \
All iterators have equal ID of If all posting lists are processed,

are processed.
We need to build
result list

T

4. Calculation of

Relevance

the document. We need to then move to 4, otherwise 3.2

search in the ID document.

Fig. 3 UML diagram of the stop lemma only sub query evaluation piloce.

8 Alexander B. Veretennikov

2.3 The Optimized Equalize Procedure

2.3.1 Implementation of Equalize with two Binary Heaps

We can implemenEqualize with two binary heaps [18]. Ld¥laxI T be the iterator
with a maximum value oValuelD. Let MinIT be the iterator with a minimum
value ofValue.ID. If MaxIT.Value.lD = MinIT.Value.ID, then all iterators have
an equal value o¥alue.l D.

A binary heap is an array of elemenis For any element8 andB, the compar-
ison operatiorA < B is defined. This array is indexed from 1.

The binary heap property: for any index[i] <H[i x 2] andH[i] <H[i x 24 1].

2.3.2 Binary Heap Operations

The binary heap provides the following operations.

Insert(E): adds a new elemerf to the heap with a computational complexity
O(logn), wheren is the count of elements id.

GetMin: returns the minimum element with a computational compjegi(1)
(returns the first element of the array, i.e., top of the heap)

U pdate(i): updates the position of the element with indexth a computational
complexityO(logn). We will createH as an array of pointers to the iterator objects.
Let us consider an example. For any two elemex&ndB in H, we define the
operationA < B asAValuelD < BValueID. LetIT be an element itd. When
IT.Next is executed, the value oT.Valueis changed, and the position bf in H
must be updated.

We include in any iterator object two additional fields, nédm#&linindex and
Max| ndex.

We create two heaps, naméeWinHeap andMaxH eap.

ForMinHeap, the operatiorA < B is defined a#\.Value.|D < B.Value.ID.

ForMaxHeap, the operatiom\ < B is defined a®\.Value.ID > B.Value.I D.

MinHeap.GetMin returns the pointer to an iterator object with the minimum
value ofValuelD.

MaxHeap.GetMin returns the pointer to an iterator object with the maximum
value ofValue.ID.

In the code for thénsert andU pdate operations foMinHeap we update the
Minl ndex field for any iterator object if its position is changed in theap’s array.
For any iteratod T, the value ofl T.Minlndex is always equals to the position of
IT's pointer in theMinHeap'’s array.

In the code for thdnsert andU pdate operations foMaxHeap we update the
MaxI ndex field for any iterator object if its position is changed in theap’s array.
For any iteratodl T, the value ofl T.MaxIndex is always equals to the position of
I T's pointer in theMaxHeap's array.

An example oMinHeap andMaxH eap with three iterators is shown in Fig. 4.

Proximity full-text searches of frequently occurring werd 9

MinHeap 00502674 005026E8 0050275C

IT1 IT2 IT3
Value.ID = 3 Value.lD = 10 Value.lD =5
Minindex = 1 Minindex = 2 Minindex = 3
Maxindex = 2 MaxIndex = 1 Maxindex = 3

Address = Address = Address =
00502674 005026E8 0050275C

MaxHeap 005026E8 00502674 0050275C

Fig. 4 Example ofMinHeap andMaxHeap with three iterators.

Iteratorl T1 hasValue.ID = 3, iteratorl T2 hasValue.ID = 10 and iteratof T3
hasValue.ID = 5.

TheMinHeap array has three cells, and theaxHeap array has three cells.
The MinHeap and MaxHeap arrays contain pointers to th& 1, T2 andI T3
iterator objects (i.e., the addresses of these objectsyoiigpare two elements of
the MinHeap array, we need to obtain two corresponding iterator objegttheir

addresses and compare théatue.| D fields.

The pointer to the iterator with the minimum value\@lue.ID, namely,| T1,
is located in the first cell of th&linHeap array. The pointer to the iterator with
the maximum value o¥alue.lD, namely,I T2, is located in the first cell of the
MaxHeap array.

2.3.3 Detailsof the Insert Operation

For example, in the following code fragment we defineltheert(1T) operation for
MinHeap. Let MinHeap.Count be the current count of elements in the binary heap
MinHeap.

LetMinHeap.Heap be the array with lengtiinHeap.MaxCount, indexed from
1, MinHeap.MaxCount > MinHeap.Count.

1) MinHeap.Count = MinHeap.Count + 1.
2) MinHeap.Heap[MinHeap.Count] =1T.
3) IT.Minlndex = MinHeap.Count.

10 Alexander B. Veretennikov

4) i = MinHeap.Count.
5) Whilei > 1 andMinHeap.Heapli].Value.ID < MinHeap.Heap[i/2].Value.ID,
perform steps 5.a-5.e.

a. T =MinHeap.Heapli], Q= MinHeap.Heap[i/2],

b. MinHeap.Heap|i/2] =T, MinHeap.Heap[i] = Q (swappingdT and its parent
element).

c. T.MinIndex=i/2 (updatingMinl ndex for T).

d. Q.MinIndex =i (updatingMinl ndex for Q).

e. Assignmenti =i/2.

The updating of thaxl ndex field in MaxHeap is performed in a similar way.
We also need to update thinl ndex andMaxl ndex fields in theU pdate opera-
tion.

2.3.4 Implementation of Equalize

We can implemenEqualize in the following way.

For any iteratot T, we includel T (its pointer) inMinHeap andMaxH eap using
MinHeap.Insert(1T) andMaxHeap.Insert(1T).

Next, in the loop, we perform the following.

1) If MinHeap.GetMin().Value.ID = MaxHeap.GetMin().ValuelD = ID, then
exit from the procedure (for any iteratbf we havel T.Value.ID = ID).

2) Select T = MinHeap.GetMin().

3) Executd T.Next.

4) If no more postings imT, then exit fromEqualize and from the search.

5) ExecuteMinHeap.U pdate(l T.Minlndex).

6) ExecuteMaxHeap.U pdate(lT.MaxIndex).

7) Gotostep 1.

TheEqualize procedure is shown in Fig. 5.

This implementation oEqualize is more effective and scalable than the basic
implementation from [10] because all operations in therimdéloop have a compu-
tational complexityO(logn), wheren is the number of iterators.

3 Search Experiments

3.1 Search Experiment Environment

In addition to the optimized search algorithm, we discussrésults of search ex-
periments with different values dfaxDistance.

Proximity full-text searches of frequently occurring werd 11

At entry point, for any iterator, its
— — 7 pointer is included in MaxHeap and
MinHeap

If MinHeap.GetMin().Value.ID =
_ MaxHeap.GetMin().Value.ID,
.7 | then exit from the procedure

@

[IT = MinHeap.GetMin() j

[No more postings in IT]

[MinHeap.Update(IT.MinIndex) j

—[MaxHeap.Update(IT.MaxIndex) j

Fig. 5 UML diagram of the Equalize procedure.

All search experiments were conducted using a collectiagexd$ from [10]. The
total size of the text collection is 71.5 GB. The text colientconsists of 195000
documents of plain text, fiction and magazine articles.

MaxDistance =5, 7 or 9.9NCount = 700,FUCount = 2100.

The search experiments were conducted using the expeaimasthodology
from [10].

We used the following computational resources:

CPU: Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz. HDD: 7200 RPM.RA24
GB.

OS: Microsoft Windows 2008 R2 Enterprise.

We created the following indexes.

Idx1: ordinary inverted file without any improvements such a¥\N8cords [10].

Idx2: our indexes, including the ordinary inverted index witB\N records and
the (w,v) and(f,s,t) indexes, withMaxDistance = 5.

12 Alexander B. Veretennikov

Idx3: our indexes, including the ordinary inverted index witB\N records and
the (w,v) and(f,s,t) indexes, withMaxDistance = 7.

Idx4: our indexes, including the ordinary inverted index witB\N records and
the (w,v) and(f,s,t) indexes, withMaxDistance = 9.

Queries performed: 975, all queries consisted only of somhas. The query set
was selected as in [10]. All searches were performed in desprggram thread. We
searched all queries from the query set with different tygfeéadexes to estimate
the performance gain of our indexes.

Query length: from 3 to 5 words.

Studies by Spink et al. [5] have shown that queries with lesgteater than 5 are
very rare. In [5], query logs of a search system were analyaadlit was established
that queries with a length of 6 represent approximately 1#Iafueries and fewer
than 4% of all queries had more than 6 terms.

3.2 Search Experiments

Average query times:

Idx1: 31.27 secldx2: 0.33 sec.ldx3: 0.45 sec.|dx4: 0.68 sec.

Average data read sizes per query:

Idx1: 745 MB,1dx2: 8.45 MB,1dx3: 13.32 MB,ldx4: 23,89 MB.

Average number of postings per query:

Idx1: 193 million,l dx2: 765 thousand$dx3: 1.251 million,l dx4: 1.841 million.

We improved the query processing time by a factor of 94.7 Wi2, by a factor
of 69.4 withldx3, and by a factor of 45.9 withdx4 (see Fig. 6).

Fig. 6 Average query exe-

cution times forldx1, 1dx2, 40
1dx3, andldx4 (seconds). 30
20
10

Idx1 Tdx2 Idx3 Idx4

The left-hand bar shows the average query execution tintethvit standard in-
verted indexes. The subsequent bars show the average quemytien time with
our indexes withMaxDigstance = 5, 7 and 9. Our bars are much smaller than the
left-hand bar because our searches are very quick.

We improved the data read size by a factor of 88 witk2, by a factor of 55.9
with 1dx3, and by a factor of 31.1 withdx4 (see Fig. 7).

Proximity full-text searches of frequently occurring werd 13

Fig. 7 Average data read

800

sizes per query fordx1, | dx2,
1dx3, andldx4 (MB). 600
400
200

We present the differences in the average query executioa fior | dx2, [dx3
andldx4 in Fig. 8 to analyze how the average query execution timeniépon the
value ofMaxDistance (see Fig. 8).

Fig. 8 Average query execu- 0.8
tion times forldx2, 1dx3, and '

|dx4 (seconds). 0.6
04
o B
0 T T
Idx2 Idx3 Idx4

The left-hand bar shows the average query execution tinleWakDistance= 5.
The subsequent bars show the average query execution tim&axDistance = 7
and 9.

The search withdx3 was slower than that withdx2 by a factor of 1.36, and the
search witH dx4 was slower than that wittdx2 by a factor of 2.06.

We present the differences in the average data read sizeiper fprl dx2, [dx3
andldx4 in Fig. 9 to analyze how the average data read size depenithe malue
of MaxDigtance (see Fig. 9).

Fig. 9 Average data read size 30
per query fodx2, 1dx3, and

ldx4 (MB). 20
) .
N |
1dx2 Idx3 Idx4

The left-hand bar shows the average data read size per qitbiylaxDistance =
5. The subsequent bars show the average data read size pewihéVlaxDistance =
7 and 9.

14 Alexander B. Veretennikov

We needed to read from the disk when searching W8 more than witH dx2
by a factor of 1.57. We needed to read from the disk when semyelith |dx4 more
than withldx2 by a factor of 2.82.

4 Conclusion and Future Work

A query that contains high-frequently occurring words icelsl performance prob-
lems. These problems are usually solved by the following@gghes.

1) Vertical and/or horizontal increases in the computingpteces and the paral-
lelization of the query execution.

2) Stop words approach.

3) Early termination approaches [1, 4].

4) Next-word and partial phrase auxiliary indexes for arcéparase search [17, 2].

The stop words approach leads to search quality degrad@di@®rbecause in
some queries a high frequently occurring word can have afgpeeaning [10, 17],
and skipping such a word could lead to the omission of immbitearch results.

Early termination approaches have trouble integratingipriy into the rele-
vance [10].

Next-word and partial phrase indexes work only for exacephrsearches.

Our approach allows us to solve performance problems witinacoeasing com-
puting resources, and we can process any word in the quergenfarm arbitrary
queries; these are our advantages.

In this paper, we have introduced an optimized method fd+téxit searches in
comparison with [10].

In this paper, we investigated searches with queries thatagoonly stop lem-
mas. Other query types are studied in [13].

We studied the dependence of the query execution time oratbe uf the param-
eterMaxDistance. The results of the search experiments viitaxDistance = 5, 7,
and 9 are presented. We also proved that a three-comporyantlex can be created
with a relatively large value dflaxDisance = 9 to allow the effective execution of
queries with a length of up to 9 (larger queries need to beldivinto parts).

We have presented the results of experiments showing that ueries contain
only stop lemmas, the average time of the query executidnauit indexes is 94.7—
45.9 times less (with a value dMaxDistance from 5 to 9) than that required when
using ordinary inverted indexes.

When we discuss our indexes, we have shown that with an isetiaghe value
of MaxDigtancefrom 5 to 7, the average query execution time increases @&t
We have shown that with an increaseMaxDistance from 5 to 9, the average query
execution time increases 2.06 times. The increadéaxDistance has a significant
impact when we are searching queries that contain only sopnias with three
component key indexes, but it is still much faster than acteaith the standard
inverted indexes (improved by a factor of 45.9 kdaxDistance = 9).

Proximity full-text searches of frequently occurring werd 15

In the future, it will be interesting to investigate othep&s of queries in more

detail and to optimize index creation algorithms for larg&iues ofMaxDistance.

Acknowledgements The work was supported by Act 211 Government of the Russideragon,
contract no. 02.A03.21.0006.

References

10.

11.

12.

13.

. Anh, V.N., de Kretser, O., Moffat, A.: Vector-Space Rarkiwith Effective Early Termina-

tion. In: SIGIR 2001 Proceedings of the 24th Annual Intepral ACM SIGIR Conference
on Research and Development in Information Retrieval, NeleaDs, Louisiana, USA, pp.
35-42 (2001) doi: 10.1145/383952.383957

. Bahle, D., Williams, H.E., Zobel, J.: Efficient Phrase @img with an Auxiliary Index. In:

SIGIR 2002 Proceedings of the 25th Annual International ASM&IR Conference on Re-
search and Development in Information Retrieval, Tamgd&rgand, pp. 215-221 (2002) doi:
10.1145/564376.564415

. Buttcher, S., Clarke, C., Lushman, B.: Term proximityrswg for ad-hoc retrieval on very

large text collections. In: SIGIR 2006 Proceedings of théh28hnual international ACM
SIGIR conference on Research and development in informegimieval, pp. 621-622 (2006)
doi: 10.1145/1148170.1148285

. Garcia, S., Williams, H.E., Cannane, A.: Access-Ordéneigxes. In: ACSC 2004 Proceed-

ings of the 27th Australasian Conference on Computer Sejebanedin, New Zealand, pp.
7-14 (2004)

. Jansen, B.J., Spink, A., Saracevic, T.: Real life, reatsiand real needs: A study and analysis

of user queries on the Web. Information Processing and Managt,36(2), 207—227 (2000)
doi: 10.1016/S0306-4573(99)00056-4

. Miller, R.B.: Response Time in Man-Computer ConversaloTransactions. In: AFIPS

Fall Joint Computer Conference, San Francisco, Califor@8 pp. 267277 (1968) doi:
10.1145/1476589.1476628

. Rasolofo, Y., Savoy, J.: Term Proximity Scoring for Keyd«Based Retrieval Systems. In:

European Conference on Information Retrieval (ECIR) 2008rances in Information Re-
trieval, pp. 207—218 (2003) doi: 10.1007/3-540-366185

. Schenkel, R., Broschart, A., Hwang, S., Theobald, M. K@i, G.: Efficient text proximity

search. In: String processing and information retrievéih 1nternational Symposium, SPIRE
2007. Lecture notes in computer science, vol. 4726, SantikgChile, October 2931, pp.
287-299. Springer, Heidelberg (2007) doi: 10.1007/978+3-75530-226

. Tomasic, A., Garcia-Molina, H. Shoens, K.: Incrementatlates of inverted lists for text

document retrieval. In: SIGMOD '94 Proceedings of the 19®IMASIGMOD International
Conference on Management of Data, Minneapolis, Minnegdtz27 May 1994. pp. 289-300
(1994) doi: 10.1145/191839.191896

Veretennikov, A.B.: Proximity full-text search withsgonse time guarantee by means of three
component keys. Bulletin of the South Ural State Universitgries: Computational Mathe-
matics and Software Engineerirgfll), 60—77 (2018). In Russian. doi: 10.14529/cmse180105
Veretennikov, A.B.: About phrases search in full-textéx. Control systems and information
technologies48(2.1), 125-130 (2012). In Russian.

Veretennikov, A.B.: Using additional indexes for fadt-text searching phrases that contains
frequently used words. Control Systems and Informatiorhietogies 52(2), 61-66 (2013).

In Russian.

Veretennikov, A.B. Efficient full-text search by meamadditional indexes of frequently used
words. Control Systems and Information Technologéé$4), 52—60 (2016). In Russian.

16

14

15.

16.

17.

18.

19.

20.

21.

Alexander B. Veretennikov

. Veretennikov, A.B.: Creating additional indexes fastfaull-text searching phrases that con-
tains frequently used words. Control systems and infolwnatechnologies63(1), 27-33
(2016). In Russian.

Veretennikov, A.B.: About a structure of easy updatdblketext indexes. Proceedings of
the 48th International Youth School-Conference “ModerabRems in Mathematics and its
Applications”, CEUR-WS, 1894, pp. 30—41 (2017). In Russian

Veretennikov, A.B.: Efficient full-text proximity sezr by means of three component keys.
Control systems and information technologié®(3), 25-32 (2017). In Russian.

Williams, H.E., Zobel, J., Bahle, D.: Fast Phrase Queyyiwith Combined In-
dexes. ACM Transactions on Information Systems (TOE)4), 573-594 (2004) doi:
10.1145/1028099.1028102

Williams, J.W.J.: Algorithm 232 Heapsort. Communiocat of the ACM,7(6), 347-348
(1964)

Yan, H., Shi, S., Zhang, F., Suel, T., Wen, J.-R.: Efficiearm Proximity Search with Term-
Pair Indexes. In: CIKM 2010 Proceedings of the 19th ACM In&tional Conference on
Information and Knowledge Management, Toronto, ON, Canppal229-1238 (2010) doi:
10.1145/1871437.1871593

Zipf, G.: Relative Frequency as a Determinant of Phorétiange. Harvard Studies in Clas-
sical Philology.40, 1-95 (1929) doi: 10.2307/408772

Zobel, J., Moffat, A.: Inverted files for text search emes. ACM Comput. Suns8(2) (2006).
Article 6. doi: 10.1145/1132956.1132959

