
Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

1 | P a g e

Proximity Full-Text Search with a Response Time
Guarantee by Means of Additional Indexes

Alexander B. Veretennikov
Chair of Calculation Mathematics and Computer Science, INSM

Ural Federal University
Yekaterinburg, Russia

alexander@veretennikov.ru

This is a pre-print of a contribution “Veretennikov A.B. Proximity Full-Text Search with a Response Time Guarantee
by Means of Additional Indexes” published in “Arai K., Kapoor S., Bhatia R. (eds) Intelligent Systems and

Applications. IntelliSys 2018. Advances in Intelligent Systems and Computing, vol 868” published by Springer,
Cham. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-01054-6_66. The work

was supported by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006.

Abstract—Full-text search engines are important tools for
information retrieval. Term proximity is an important factor in
relevance score measurement. In a proximity full-text search, we
assume that a relevant document contains query terms near each
other, especially if the query terms are frequently occurring
words. A methodology for high-performance full-text query
execution is discussed. We build additional indexes to achieve
better efficiency. For a word that occurs in the text, we include in
the indexes some information about nearby words. What types of
additional indexes do we use? How do we use them? These
questions are discussed in this work. We present the results of
experiments showing that the average time of search query
execution is 44-45 times less than that required when using
ordinary inverted indexes.

Keywords—full-text search; search engines; inverted indexes;
additional indexes; proximity search; term proximity

I. INTRODUCTION

A search query consists of several words. The search result
is a list of documents containing these words. In a modern
search system, documents that contain search query words that
are near each other are more relevant than other documents [1,
2]. Inverted indexes [3, 4] are used to address this search task.
For each word in each document, we need to store a record in
the index. This record includes the number of the word in the
document and the ID (identifier) of the document. We can
define the ID of a document as the document’s ordinal number.
These records are called “postings”.

Words appear in documents at different frequencies. The
maximum query response time is determined by the most
frequently occurring words. Zipf’s law [5] describes the typical
word frequency distribution. It is common to have a search
system that can usually perform a query within 1 sec. of time
but works very slowly, requiring 20-30 sec., for example, for a
query that contains frequently occurring words. This is the
problem that we wish to solve in this paper. With additional

indexes, we can guarantee a stable query response time, for
example, within 1 sec.

An example of a word frequency distribution is shown in
Fig. 1. The horizontal axis represents different words, from
frequently occurring words to infrequently occurring words
(from left to right, in decreasing order of their frequencies). On
the vertical axis, we plot the number of occurrences of each
word. With typical inverted indexes, the query execution time
is proportional to the number of occurrences of the queried
words in the indexed texts.

Fig. 1. Word frequency distribution.

Some search systems exclude most frequently used words
from the index and, consequently, from any search – this is
called the stop words approach. However, this approach is not
correct [6]. Some most frequently occurring words can have
unique meanings in specific contexts. For example, consider
the query “time and a word yes”. Yes are an English rock band,
and “Time and a Word” is one of their well-known songs.
Therefore, the word “yes” has a specific meaning in the context
of this query. A similar query example is “who are you who”.

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

2 | P a g e

The Who are an English rock band, and “Who are You” is one
of their songs.

The other approach is to maintain additional indexes for
faster query execution.

In [1], some additional indexes are introduced, but only
two-word queries are considered. In [7], most frequently
occurring words are excluded from consideration. We avoid
both of these faults by introducing several types of additional
indexes for several types of words.

II. PROXIMITY AND RELEVANCE

A. Importance of proximity

We introduce a parameter MaxDistance. Let us consider a
search result – a document containing words in the specified
query. If the length of the fragment containing the words is less
than or equal to MaxDistance, then the search result is relevant
and important; otherwise, it can be skipped.

For example, we consider the search query “time and a
word yes”.

Result 1: “time and a word yes” – This is an important
search result.

Result 2: “time and a word by yes” – This search result is
also important.

Result 3: “time …some other words … and … some other
words … a … word … some other words… by … some other
words… yes” – This search result may not be important
because “time”, “and”, and “yes” are not linked by any
meaning.

We will present a formal definition of MaxDistance later.

B. Relevance function

Let the importance of a pair of word occurrences be
inversely proportional to the square of the distance between the
words in the document [1].

Consider the following relevance function:

 S = a ∙SR + b∙ IR + c∙ TP 

Here a, b, and c are non-negative parameters, where a + b + c
= 1. Search results can be sorted in accordance with this
function [1]. SR is a static rank of the document, such as the
PageRank [8], and is independent of the query. IR is an
information retrieval rank, such as BM25. TP is a proximity
ranking function.

For two word occurrences A and B, the value of TP(A, B)
can be calculated as

1 / |A − B|2, where (|A − B|) is the distance between the words
in the document.

We define the occurrence of a word as its ordinal number
within the document.

Consider the following text: “time and a word by yes”.

The word positions (ordinal numbers) are as follows: time :
0, and : 1, a : 2, word : 3, by : 4, yes : 5.

Consider the following search query: “and word”. The
search result is “and a word”, at position 1. There is an extra
word, “a”, between “and” and “word” in this text. Therefore,

TP = 1 / |1 – 3| 2 = 0.25.

Consider the search query “time and”. The search result is
“time and”, at position 0. Therefore,

TP = 1 / |0 – 1| 2 = 1.

If the search query occurs in the text in its exact form (with
no extra words between the query terms in the text), then

TP = 1.

C. Importance of TP

Let us introduce a value denoted by MaxTPDistance to
define the following condition: if |A − B| ≤ MaxTPDistance,
then TP is “important”; otherwise, only (SR + IR) is
“important”.

What does “important” mean? We can assume that SR, IR
and TP can be normalized.

Thus, 0 ≤ SR ≤ 1, 0 ≤ IR ≤ 1, and 0 ≤ TP ≤ 1.

Then, 0 ≤ a ∙SR ≤ 1, 0 ≤ b∙ IR ≤ 1, and 0 ≤ c∙TP ≤ 1.

Let us introduce a parameter TP_Critical, with an example
value of 0.15.

If (c ∙ TP) ≤ TP_Critical, then the relevance (or score) of
the search result will be determined mostly by SR + IR. In this
case, TP is not “important”.

Let c = 1 and TP_Critical = 0.15.

Consider the following text: “time and a word by yes”.

Consider the following search query: “and word”. The
search result is “and a word”, at position 1, with |A − B| = 2.

c ∙ TP = 0.25 > TP_Critical, indicating that the search result
is important.

Now, consider the search query “time word”. The search
result is “time and a word”, at position 0, with |A − B| = 3.

c ∙ TP = 1 / 32 ≈ 0.11 < TP_Critical, indicating that the
search result is not important.

In this case, MaxTPDistance = 2.

D. Evaluating TP for more than two words

How do we evaluate TP if the query consists of more than
two words? Consider an n-word query Q. We have a search
result R, which is represented by n word positions in a
document:

R = X(1), X(2), …, X(n).

Let A(R) = min(X(1), …, X(n)) and

B(R) = max(X(1), …, X(n)).

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

3 | P a g e

Requirement: if the search query occurs in the text in its
exact form (with no extra words between the query terms in the
text), then TP(R) = 1.

TP(R) = 1 when |A(R) – B(R)| = (n – 1).

 Proposition:

TP(R) = TP(X(1),…,X(n)) = 1 / (|A(R) – B(R)| – (n – 2))2.

For example, suppose that we have the following search
query: “time and a word yes”.

Result 1: “time and a word yes” – This is an important
search result.

TP(R) = 1 / (|0 – 4| – (5 – 2)) 2 = 1.

Result 2: “time and a word by yes” – This is a less
important search result.

TP(R) = 1 / (|0 – 5| – (5 – 2)) 2 = 0.25.

We also can consider a more flexible TP function, such as

TP(R) = TP(X(1),…,X(n)) =

1 / (p ∙ (|A(R) – B(R)| – (n – 2)))2.

The value of p can be different for different systems.

E. Evaluating MaxTPDistance for more than two words

Let us define the function MaxTPDistance(n) as follows:
for any search query Q consisting of m words, where m ≤ n,
and a search result R = X(1), X(2), …, X(m) for Q, if |A(R) –
B(R)| > MaxTPDistance(n), then c ∙ TP(R) ≤ TP_Critical;
moreover, MaxTPDistance(n) is the smallest value for which
this is true.

By definition,

if a ≥ b, then MaxTPDistance(a) ≥ MaxTPDistance(b).

Let n = 3, TP_Critical = 0.15, and c = 1.

Consider a 3-word search query Q and a search result R.

If |A(R) – B(R)| = 2, then

TP(R) = 1 / (2 – 1) 2 = 1 > TP_Critical.

If |A(R) – B(R)| = 3, then

TP(R) = 1 / (3 – 1) 2 = 0.25 > TP_Critical.

If |A(R) – B(R)| = 4, then

TP(R) = 1 / (4 – 1) 2 ≈ 0.11 < TP_Critical.

Consider a 2-word search query Q and a search result R.

If |A(R) – B(R)| = 1, then

TP(R) = 1 / (1) 2 = 1 > TP_Critical.

If |A(R) – B(R)| = 2, then

TP(R) = 1 / (2) 2 = 0.25 > TP_Critical.

If |A(R) – B(R)| = 3, then

TP(R) = 1 / (3) 2 ≈ 0.11 < TP_Critical.

In this case, MaxTPDistance(3) = 3.

For any query Q consisting of m words, where m ≤ 3, and
any search result R for Q that satisfies the condition |A(R) –
B(R)| > 3, we have c∙ TP(R) ≤ TP_Critical.

F. Definition of MaxDistance

Let us introduce our new parameter, MaxDistance.

Let n ≥ 1 be a number.

We assume that for any query of length m ≤ n, our search
will return all relevant results. If the query has a length > n, it
must be divided into parts.

Let MaxDistance = MaxTPDistance(n).

We can also define a parameter MaxDistance = 7 (for
example) and build indexes accordingly. Then, for any query
of length m, where m ≤ n ≤ MaxDistance, with n being some
number, our search will return all relevant results.

In our experiments, we use MaxDistance = 5, 7 or 9.

G. More generic TP structure.

Let us also consider a more generic version of TP:

TP(R) = TP(X(1),…,X(n)) = 1 / (|A(R) – B(R)| – (n – 2))e(n),

e(n) = 1 + (2 / n).

We assume that for longer queries, more extra words are
acceptable between query terms in the text.

Let us calculate MaxTPDistance(3) for this case.

Let n = 3, TP_Critical = 0.15, and c = 1.

Consider a 3-word search query Q and a search result R.

If |A(R) – B(R)| = 2, then TP(R) = 1 > TP_Critical.

If |A(R) – B(R)| = 3, then TP(R) ≈ 0.314 > TP_Critical.

If |A(R) – B(R)| = 4, then TP(R) ≈ 0.16 > TP_Critical.

If |A(R) – B(R)| = 5, then TP(R) ≈ 0.09 < TP_Critical.

Consider a 2-word search query Q and a search result R.

If |A(R) – B(R)| = 1, then

TP(R) = 1 / (1) 2 = 1 > TP_Critical.

If |A(R) – B(R)| = 2, then

TP(R) = 1 / (2) 2 = 0.25 > TP_Critical.

If |A(R) – B(R)| = 3, then

TP(R) = 1 / (3) 2 ≈ 0.11 < TP_Critical.

In this case, MaxTPDistance(3) = 4. We need a larger value
of MaxDistance with such a TP function.

III. WORD TYPE

In [9], we defined three types of words.

Stop words: Examples include “and”, “at”, “or”, “yes”,
“who”, “was”, and “war”. These words are very commonly
encountered and may not be included in the index in some
other approaches. However, we include all words.

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

4 | P a g e

Frequently used words: These words are frequently
encountered but convey meaning. These words should always
be included in the index.

Ordinary words: This category contains all other words.
We assume that no performance problems will arise from these
words.

We use a morphological analyzer for lemmatization. For
each word in the dictionary, the analyzer provides a list of
numbers of lemmas (i. e., basic or canonical forms). The
lemma numbers lie in the range from zero to (WordsCount –
1), where WordsCount is the number of different lemmas
considered (we use a combined Russian/English dictionary
with approximately 200 000 Russian lemmas and 92 000
English lemmas).

If a word does not appear in the analyzer’s dictionary, we
assume that its lemma is the same as the word itself.

When using the analyzer, we apply aforementioned three-
type division approach, not to the words themselves but to the
lemmas of the words. The lemmas are divided into three types
in terms of the frequency with which they are encountered:
stop lemmas, frequently used lemmas, and other lemmas.

How do we distribute the lemmas among these groups? Let
us sort all lemmas in decreasing order of their occurrence
frequency in the texts. This sorted list we call the FL-list. The
number of a lemma in the FL-list we call its FL-number. Let
the FL-number of a lemma w be denoted by FL(w).

The first SWCount most frequently occurring lemmas are
stop lemmas. The second FUCount most frequently occurring
lemmas are frequently used lemmas. All other lemmas are
ordinary lemmas. SWCount and FUCount are parameters.
Representative example values are SWCount = 700 and
FUCount = 2100.

Let us consider the following text, with identifier ID1: “A
friend of mine who has desired the honour of meeting with
you”. This is the excerpt from the Charles Dickens’s Barnaby
Rudge.

After lemmatization: [a] [friend] [of] [mine, my] [who]
[have] [desire] [the] [honour] [of] [meet, meeting] [with] [you].

With FL-numbers: [a: 17] [friend: 793] [of: 24] [mine:
2482, my: 264] [who: 293] [have: 55] [desire: 2163] [the: 10]
[honour: 3774] [of: 24] [meet: 1008, meeting: 4375] [with: 40]
[you: 47].

Let us enumerate the words starting from zero. Then, the
word “friend” appears in the text at position 1. Then, the
lemma “friend” appears in the text at position 1. The lemma
“my” appears in the text at position 3. Thus, the distance
between the lemma “my” and the lemma “friend” in the text is
2. We can say that lemma “my” > “of”, because FL(my) = 264,
FL(of) = 24, and 264 > 24 (we use the FL-numbers to establish
the order of the lemmas in the set of all lemmas).

For an ordinary lemma q, we can say that FL(q) = ~. In this
case, q occurs in the texts so rarely that FL(q) is irrelevant. We
denote by “~” some big number.

Let us consider the results obtained with our example
values, namely, SWCount = 700 and FUCount = 2100.

Stop lemmas (< 700): a, of, my, who, have, the, with, you.

Frequently used lemmas (≥ 700, < 2800): friend, mine,
desire, meet.

Ordinary lemmas (≥ 2800): honour, meeting.

IV. ADDITIONAL INDEXES

We define several types of additional indexes.

A. The ordinary index with near stop word (NSW) records

For each lemma in each document, a record (ID, P, NSW) is
included in the index. ID is the ordinal number of the
document. P is the corresponding word’s ordinal number
within the document. The NSW record contains information
about all stop lemmas occurring near position P (at a distance ≤
MaxDistance). This information is efficiently encoded [9, 10,
11].

For example, let MaxDistance = 5. The NSW record for the
first occurrence of “friend” in the aforementioned example
contains the following: (a, −1), (of, 1), (my, 2), (who, 3) (have,
4). In (a, −1), the distance (−1) between “a” and “friend” is
stored, and so on.

Let the document identifier ID1 be 27. Below, let us
consider several example postings in the ordinary index, in the
format (document ID, word position, NSW record).

friend: (27, 1, ((a, −1), (of, 1), (my, 2), (who, 3) (have, 4))).

mine: (27, 3, ((a, −3), (of, −1), (who, 1), (have, 2), (the, 4))).

desire: (27, 6, ((of, −4), (my, −3), (who, −2), (have, −1), (the,
1), (of, 3), (with, 5))).

The lemma types considered here are frequently used and
ordinary.

For a stop lemma, we include only the first occurrence in
the document and no NSW records.

Let us consider a lemma. For optimization purposes, we
can use two data streams for the lemma. The first data stream
contains the (ID, P) records. The second data stream contains
the corresponding NSW records. In this case, the NSW records
can be easily skipped if required.

See [11] for more details about NSW records.

B. The expanded (w, v) indexes.

The expanded (w, v) index is the list of occurrences of the
lemma w for which lemma v occurs in the text at a distance less
than or equal to MaxDistance from w.

The lemma types considered are as follows: for w,
frequently used; for v, frequently used or ordinary. Each
posting includes the distance between w and v in the text.

In the case that both w and v are frequently used, we create
only one expanded index. To prevent duplication, we create an
expanded (w, v) index only if w ≤ v.

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

5 | P a g e

Below, let us consider several example postings in the
format (document ID, word position, distance).

(friend, mine): (27, 1, 2). Here, 27 is the document ID, 1 is
the position of “friend” in the document, and 2 is the distance
between “friend” and “mine” in the document. We store a
posting only for the key (friend, mine); no posting is stored for
the key (mine, friend). Note that FL(friend) = 792 < FL(mine)
= 2482.

(friend, desire): (27, 1, 5).

(desire, mine): (27, 6, −3).

(mine, honour): (27, 3, 5).

We previously studied (w, v) indexes in [9, 10, 11, 12]. In
the current work, we describe several new use cases.

C. The expanded (f, s, t) indexes

The expanded (f, s, t) index is the list of occurrences of the
lemma f for which lemmas s and t both occur in the text at
distances less than or equal to MaxDistance from f.

We create an expanded (f, s, t) index only for the case in
which f ≤ s ≤ t.

Here, f, s, and t are all stop lemmas.

Below, let us consider several example postings, in the
format (document ID, word position, distance between f and s,
distance between f and t):

(a, of, my): (27, 0, 2, 3).

(a, my, who): (27, 0, 3, 4).

(a, of, who): (27, 0, 2, 4).

(a, have, my): (27, 0, 5, 3).

(of, my, who): (27, 2, 1, 2).

…

(of, with, who): (27, 9, 2, −5).

This type of index is the largest.

V. PREPROCESSING THE QUERY

Let us consider the following query: “friend mine who”.

After lemmatization: [friend] [mine, my] [who].

Each element of the query after lemmatization is called a
cell. This query contains three cells. The first cell is [friend],
the second is [mine, my], and the last is [who].

Important condition: Each cell of the query must contain
lemmas of only one type. If this condition is not met, then the
query must be divided. For example, from the initial query
[friend] [mine, my] [who], we derive two queries: [friend]
[mine] [who] and [friend] [my] [who].

Second condition: If all lemmas in the query are stop
lemmas, then each cell must contain only one lemma. If this
condition is not met, then the query must be divided.

VI. PROCESSING THE QUERY

We apply different processing methods for different types
of queries.

A. All lemmas of the query are ordinary.

In this case, we use the ordinary index. We skip the NSW
records. In this case, MaxDistance is not used.

B. All lemmas of the query are frequently used

Let us consider the following query: “beautiful red hair”.

After lemmatization: [beautiful: 2216] [red: 2191] [hair:
1850].

1) The first approach
The lemma “beautiful” is the lemma that is encountered

least often in the texts.

We therefore designate [beautiful] as the main cell of the
query.

We consider the following expanded indexes: (red,
beautiful) and (hair, beautiful).

The lemma “red” is more frequently used than “beautiful”.
Thus, we have the expanded index (red, beautiful). However,
there are two logical expanded indexes: (red, beautiful) and
(beautiful, red). Suppose that we are reading records from the
(red, beautiful) index. From a record (ID, Position, Distance),
we can produce the record (ID, Position + Distance,
−Distance), which corresponds to the (beautiful, red) logical
index.

Thus, we can say that we have the (beautiful, red) and
(beautiful, hair) indexes.

Each of these indexes contains the positions of the lemma
“beautiful” in texts.

Let us consider the following text: “A beautiful,
shimmering, red curly hair …".

We have (ID, 3, –2) in the (red, beautiful) index and (ID, 5,
–4) in the (hair, beautiful) index.

Consequently, we have (ID, 1, 2) in the (beautiful, red)
logical index and (ID, 1, 4) in the (beautiful, hair) logical
index. These two records have identical ID and Position fields.

We need to check for all lemmas in the query, except the
main lemma, for which a record (ID, P, *) exists at the
specified position (ID, P) in all selected logical expanded
indexes.

Let us consider the position (ID, 1). In the (beautiful, red)
index, a record (ID, 1, 2) exists. In the (beautiful, hair) index, a
record (ID, 1, 4) exists. Thus, we have “beautiful red hair” in
the text.

2) The second approach.
Let us consider a (w, v) index. From a record (ID, Position,

Distance), we can produce two related records: (ID, Position)
for the key w and (ID, Position + Distance) for the key v. Thus,
from one (w, v) index, we can derive two logical indexes (w, v)
and (v, w). The first contains the occurrences of w, and the
second contains the occurrences of v.

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

6 | P a g e

From the record (ID, 3, –2) in the (red, beautiful) index, we
can produce the record (ID, 3) as an occurrence of “red” and
(ID, 1) as an occurrence of “beautiful”.

We can divide any query into a list of pairs of words. For
example, let us consider “beautiful red hair” –> (beautiful red)
(red hair). Then, from the extended (beautiful, red) and (red,
hair) indexes, we can produce 4 streams of postings, one each
for “beautiful”, “red”, “red” and “hair” (there is one extra “red”
stream, which we can skip). Then, we combine these logical
streams for “beautiful”, “red” and “hair” and obtain the results.

3) Comparison of the first and second approaches
The second approach requires more computational

resources to produce single-key streams in memory, but fewer
data need to be loaded. Consider the query “beautiful bright red
hair” –> [beautiful: 2216] [bright: 2530] [red: 2191] [hair:
1850].

The first approach requires 3 two-key indexes: (beautiful,
bright), (red, bright), and (hair, bright). The second approach
requires 2 two-key indexes: (beautiful, bright) and (red, hair).

Now, let us consider the query “beautiful red rose” –>
[beautiful: 2216] [red: 2191] [rose: 1007, rise: 1753]. Using the
first approach, we need three indexes: (red, beautiful), (rise,
beautiful), and (rose, beautiful).

4) The third approach.
We can divide any query into a list of pairs of words. For

example, let us consider “beautiful red hair” –> (beautiful red)
(red hair). Then, we need to combine the corresponding
streams of data. This approach is more effective than the
second approach, but it is also more complex to realize because
it is more complex to combine two-key streams than single-key
streams.

C. Not all of the lemmas are frequently used, and there are no
stop lemmas.

Let us consider the following query: “red glorious
promising rose”.

After lemmatization: [red: 2191], [glorious: ~] [promising:
~] [rose: 1007, rise: 1753].

Frequently used lemmas: red, rose, rise.

Ordinary lemmas: glorious, promising.

There are several approaches we can propose here.

1) The first approach.
We select the frequently used lemma w in the query that

has the lowest frequency. For every other lemma v in the
query, a logical expanded (w, v) index exists. For example, let
us select [red] as the main cell. We can use the following
expanded indexes:

(red, promising) – contains occurrences of red (near
promising).

(red, glorious) – contains occurrences of red (near glorious).

(red, rise) – contains occurrences of red (near rise).

(red, rose) – contains occurrences of red (near rose).

2) The second approach
We select the ordinary lemma w in the query that has the

lowest frequency. For every other frequently used lemma v in
the query, a logical expanded (w, v) index exists. For every
other ordinary lemma q in the query, we can use the ordinary
index q (skipping the NSW records). For example, let us select
[promising] as the main cell. We can use the following
indexes:

(red, promising) – contains occurrences of red (near
promising).

(rise, promising) – contains occurrences of rise (near
promising).

(rose, promising) – contains occurrences of rose (near
promising).

(glorious) – we use the ordinary index, because both “glorious”
and “promising” are ordinary lemmas and no extended
(promising, glorious) index exists.

We do not need a list of occurrences of “promising”
because we know that “promising” occurs somewhere nearby.

3) The third approach.
We can also select a two-component key index for a

frequently used or ordinary lemma. For this example, we have

(red, promising) for red,

(rise, promising) for rise,

(rose, promising) for rose, and

(red, glorious) for glorious.

If we store in some dictionary the length of each index (w,
v), then we can select the most suitable variant.

D. All lemmas of the query are stop lemmas.

In this case, (f, s, t) indexes are used.

Let us consider the following query: “to be not to be”.

After lemmatization: [to: 7] [be: 21] [not: 156] [to: 7] [be:
21]. We can use the (to, be, not) and (to, to, be) indexes to
produce results.

Now, let us consider the following query: “who are you
who”.

[who: 293] [are: 268, be: 21] [you: 47] [who, 293].

We produce two new queries:

Q1: [who: 293] [are: 268], [you: 47] [who, 293].

Q2: [who: 293] [be: 21], [you: 47] [who, 293].

Let us consider Q1.

We can use the (you, are, who) and (you, who, who)
indexes to obtain results.

E. All lemma types appear in the query

Let us consider the following query: “notes about Gallic
war”.

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

7 | P a g e

After lemmatization: [note: 1373] [about: 211] [gallic: ~]
[war: 674].

Stop lemmas: about, war.

Frequently used lemmas: note.

Ordinary lemmas: gallic.

We select the non-stop lemma w with the lowest frequency.
For the lemma w, we use the ordinary index and process the
NSW records. For this example, we select “gallic”.

For every other frequently used lemma v in the query, a
logical expanded (w, v) index exists. In this example, the only
index of this type is (note, gallic).

For every other ordinary lemma q in the query, we need to
use the ordinary index q (skipping the NSW records). If
another frequently used lemma p exists in the query, we can
also use the expanded (p, q) index instead of the ordinary
index.

F. Additional examples

Consider the following query: “time and a word yes”.

After lemmatization: [time: 184] [and: 28] [a: 17] [word:
602] [yes: 2375].

We can see that in our dictionary, “time”, “and”, “a”, and
“word” are all stop lemmas, whereas “yes” is a frequently used
lemma. In this case, we can use the ordinary index with NSW
records. We select from the ordinary index all occurrences of
“yes”, and for each such occurrence, we need to check the
NSW record for the existence of the lemmas “time”, “and”,
“a”, and “word”.

VII. SEARCH EXPERIMENT ENVIRONMENT

All search experiments were conducted using a collection
of texts with a total size of 71.5 GB, consisting of 195 000
documents of plain text, fiction and magazine articles.

MaxDistance = 5, 7 or 9.

SWCount = 700.

FUCount = 2100.

We used the following computational resources:

CPU: Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz.

HDD: 7200 RPM.

RAM: 24 GB.

OS: Microsoft Windows 2008 R2 Enterprise.

Query selection: We selected a document from the
collection. Next, we selected some words from the document.
We formed a query from those words. We selected the words
from different positions in the document. We evaluated the
query using standard inverted indexes and our indexes to
estimate the performance gain of our approach.

The experimental procedure is as follows.

1. Selection of a random document in the index.

2. Selection of search queries as follows.

2.1. Selection of a sequence of words. The query length is
3, 4 or 5.

2.2. Selection of a sequence of words, with the omission of
every other word. The query length is 3.

Let us consider a document “Gaul, taken as a whole, is
divided into three parts”. We select queries “Gaul taken as”,
“Gaul taken as a”, “Gaul taken as a whole” at 2.1. We select
“Gaul as whole” at 2.2.

2.3. Selection of a sequence of words, with the omission of
the second word. For example, consider the query “Gaul as a
whole”. The query length is 3 or 4.

2.4. Selection of a sequence of words, with the omission of
the second and third word. For example, consider the query
“Gaul a whole”. The query length is 3.

3. Search for each selected query. We evaluate the query
using standard inverted indexes and our indexes. In the search,
all the records corresponding to the given word are read. Thus,
even if the required query is found, reading continues to the
end.

Queries of three, four, or five words are selected, because
MaxDistance = 5 in the first experiment.

However, we can perform larger queries with a larger value
of MaxDistance.

The benefits of this approach are as follows.

1. We verify that the index is correctly constructed and
performs as required. Since queries are selected from an
already-indexed document, they should be precisely found. We
verify that the search results include a record corresponding to
the document used in selecting the query.

2. The queries found are relatively diverse and include a
large number of different words.

3. Many of the queries include stop words and frequently
encountered words.

All the queries are processed sequentially in a single
program thread.

VIII. SEARCH EXPERIMENTS WITH MAXDISTANCE = 5

Idx1: ordinary inverted file without any improvements such
as NSW records (the size of Idx1 was 43.3 GB).

Idx2: our indexes, including the ordinary inverted index
with NSW records and the (w, v) and (f, s, t) indexes, with
MaxDistance = 5.

Queries: 5250 (519 queries consisted only of stop lemmas).

Query length: from 3 to 5 words.

Average query times:

Idx1: 13.66 sec., Idx2: 0.29 sec.

Average data read sizes per query:

Idx1: 468.6 MB, Idx2: 9.9 MB.

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

8 | P a g e

We improved the query processing time by a factor of 47.1
with Idx2, and we improved the data read size by a factor of
47.3; see Fig. 2 and Fig. 3, respectively.

Fig. 2. Average query execution times for Idx1 and Idx2 (seconds), with
MaxDistance = 5.

The left-hand bar shows the average query execution time
with the standard inverted indexes. The right-hand bar shows
the average query execution time with our indexes. Our bar is
much smaller than the other bar because our searches are very
quick.

Fig. 3. Average data read sizes per query for Idx1 and Idx2 (MB), with
MaxDistance = 5.

The left-hand bar shows the average data read size per
query with the standard inverted indexes. The right-hand bar
shows the average data read size per query with our indexes.
We need to read much fewer data from the disk, and our bar is
much smaller than the other bar.

Index sizes:

Ordinary index with NSW records: 110 GB (the total size
of the NSW records can be calculated as follows: 110 GB –
43.3 GB = 66.7 GB).

Expanded (w, v) indexes: 143 GB.

Expanded (f, s, t) indexes: 622 GB.

IX. SEARCH EXPERIMENTS WITH MAXDISTANCE = 7

Idx1: ordinary inverted file without any improvements such
as NSW records.

Idx2: our indexes, including the ordinary inverted index
with NSW records and the (w, v) and (f, s, t) indexes, with
MaxDistance = 7.

Queries: 5250 (519 queries consisted only of stop lemmas).

Query length: from 3 to 5 words.

Average query times:

Idx1: 13.66 sec., Idx2: 0.31 sec.

Average data read sizes per query:

Idx1: 468.6 MB, Idx2: 10.03 MB.

We improved the query processing time by a factor of 44
with Idx2, and we improved the data read size by a factor of
46.7.

Fig. 4. Average query execution times for Idx1 and Idx2 (seconds), with
MaxDistance = 7.

We can see a small increase in the average query execution
time in comparison with the MaxDistance = 5 case.

X. SEARCH EXPERIMENTS WITH MAXDISTANCE = 9

Idx1: ordinary inverted file without any improvements such
as NSW records.

Idx2: our indexes, including the ordinary inverted index
with NSW records and the (w, v) and (f, s, t) indexes, with
MaxDistance = 9.

Queries: 5250 (519 queries consisted only of stop lemmas).

Average query times:

Idx1: 13.66 sec., Idx2: 0.29 sec.

Average data read sizes per query:

Idx1: 468.6 MB, Idx2: 10.236 MB.

We improved the query processing time by a factor of 47.1
with Idx2, and we improved the data read size by a factor of
45.77.

Fig. 5. Average query execution times for Idx1 and Idx2 (seconds), with
MaxDistance = 9.

With MaxDistance = 9, we have the same average query
execution time as with MaxDistance = 5. We can see a small

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

9 | P a g e

increase in the average data read size per query in comparison
with the MaxDistance = 5 case.

 The average query execution times with the additional
indexes are roughly the same with MaxDistance = 5, 7 and 9.
The disposition of the data on the disk or some peculiarities of
our index structure [13] could be sources of minor differences.

XI. OTHER ADDITIONAL INDEXES AND RELATED WORK

In [6, 14, 15], nextword indexes and partial phrase indexes
are introduced. These additional indexes can be used to
improve performance. However, they can help only with
phrase searches. Consider the text “to be or not to be”. With
the query “to be not to be”, this text will not be found in a
phrase search. Thus, our approach is more powerful.

Only phrase search is optimized in [16] as well.

In [1], only two-term queries are processed. The authors of
[1] decreased the query processing time by up to a factor of 5
(table 5-2 in [1]). By contrast, our indexes can decrease the
query processing time by up to a factor of 44-47, and we
support multiple-term queries. We can see this in Fig. 6.

Fig. 6. Query processing time comparison with Term-Pair indexes [1].

The leftmost bar shows the average query execution time
with the standard inverted indexes, normalized to 100%. The
center bar shows the average execution time with term-pair
indexes [1] relative to that with the standard inverted file. The
rightmost bar shows the average execution time with our
indexes relative to that with the standard inverted file. The
rightmost bar is tiny because of our very fast searches.

XII. VALUE OF MAXDISTANCE

The value of MaxDistance may be different for different
types of lemmas. For example, for stop lemmas, we can use 5
or 7, whereas for frequently used lemmas, we can use 7, 9 or
11.

We can assume that for more frequently occurring lemmas,
the importance of the semantic connections between nearby
words will be high only for small distances between words. For
less frequently occurring lemmas, the importance of semantic
connections can be higher at larger distances.

Moreover, we can introduce a function FMaxDistance(w)
to represent the value of MaxDistance for lemma w.

XIII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced several types of words
and several types of additional indexes for different word
types. We can use additional indexes of different types
depending on the types of words contained in the search query.

A search query can contain any words, including very
frequently occurring words.

We have also defined several types of search queries
depending on the types of words they contain.

For each search query type, we have defined which types of
additional indexes can be used for query execution.

We have presented the results of experiments showing that
the average time of query execution with our indexes is 44-47
times less than that required when using ordinary inverted
indexes.

For each word in the text, we use the additional indexes to
store information about the words at distances from the given
word of less than or equal to MaxDistance (a parameter, which
can take a value of 5, 7, or even more). This information allows
us to enhance the processing speed for frequently occurring
words contained in the search query, such as “war”, “world”,
“beautiful”, “red”, “mine”, “be”, and “who”.

We also studied the dependence of the query execution
time on the value of MaxDistance. The results of search
experiments with MaxDistance = 5, 7, and 9 are presented.

In future research, we wish to study optimized methods of
index creation for large values of MaxDistance. The index
building time for large values (greater than 9) of MaxDistance
can, for now, be regarded as a limitation of our method.
Moreover, it will be interesting to investigate different types of
queries in more detail.

REFERENCES

[1] H. Yan, S. Shi, F. Zhang, T. Suel, J. R. Wen, “Efficient term proximity
search with term-pair indexes,” CIKM '10 proceedings of the 19th ACM
international conference on information and knowledge management.
Toronto, ON, Canada, October 26–30, 2010, pp. 1229–1238.

[2] S. Buttcher, C. Clarke, B. Lushman, “Term proximity scoring for ad-hoc
retrieval on very large text collections,” In SIGIR’2006, pp. 621–622.

[3] J. Zobel, A. Moffat, “Inverted files for text search engines,” ACM
computing surveys, 2006, 38(2), Article 6.

[4] A. Tomasic, H. Garcia-Molina, K. Shoens, “Incremental updates of
inverted lists for text document retrieval,” SIGMOD '94 Proceedings of
the 1994 ACM SIGMOD International Conference on Management of
Data. Minneapolis, Minnesota, May 24–27, 1994, pp. 289–300.

[5] G. Zipf, “Relative frequency as a determinant of phonetic change,”
Harvard studies in classical philology. 1929, vol. 40, pp. 1–95.

[6] H. E. Williams, J. Zobel, D. Bahle, “Fast phrase querying with
combined indexes,” ACM transactions on information systems (TOIS).
2004, vol. 22, no. 4, pp. 573–594.

[7] R. Schenkel, A. Broschart, S. Hwang, M. Theobald, G. Weikum,
“Efficient text proximity search,” String processing and information
retrieval. 14th International Symposium. SPIRE 2007. Lecture notes in
computer science. Santiago de Chile, Chile, October 29–31, 2007. vol.
4726. Springer, Berlin, Heidelberg. pp. 287–299.

[8] S. Brin and L. Page. “The anatomy of a large-scale hypertextual web
search engine,” In Proc. of the 7th Intl. Conf. on World Wide Web
(WWW’98), 1998.

Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

10 | P a g e

[9] Veretennikov A.B. “O poiske fraz i naborov slov v polnotekstovom
indekse [About phrases search in full-text index] ,” Sistemy upravleniya
i informatsionnye tekhnologii [Control systems and information
technologies]. 2012. vol. 48, no. 2.1, pp. 125–130. In Russian.

[10] Veretennikov A.B. “Ispol'zovanie dopolnitel'nykh indeksov dlya bolee
bystrogo polnotekstovogo poiska fraz, vklyuchayushchikh chasto
vstrechayushchiesya slova [Using additional indexes for fast full-text
searching phrases that contains frequently used words],” Sistemy
upravleniya i informatsionnye tekhnologii [Control Systems and
Information Technologies]. 2013. vol. 52, no. 2, pp. 61–66. In Russian.

[11] Veretennikov A.B. “Effektivnyi polnotekstovyi poisk s ispol'zovaniem
dopolnitel'nykh indeksov chasto vstrechayushchikhsya slov [Efficient
full-text search by means of additional indexes of frequently used
words],” Sistemy upravleniya i informatsionnye tekhnologii [Control
Systems and Information Technologies]. 2016. vol. 66, no. 4, pp. 52–60.
In Russian.

[12] Veretennikov A.B. “Sozdanie dopolnitel'nykh indeksov dlya bolee
bystrogo polnotekstovogo poiska fraz, vklyuchayushchikh chasto
vstrechayushchiesya slova [Creating additional indexes for fast full-text
searching phrases that contains frequently used words],” Sistemy

upravleniya i informatsionnye tekhnologii [Control systems and
information technologies]. 2016. vol. 63. no. 1, pp. 27–33. In Russian.

[13] Veretennikov A.B. “O strukture legko obnovlyaemykh polnotekstovykh
indeksov [About a structure of easy updatable full-text indexes], ”
Sovremennye problemy matematiki i ee prilozhenii. Trudy
Mezhdunarodnoi (48-i Vserossiiskoi) molodezhnoi shkoly-konferentsii}
[Proceedings of the 48th International Youth School-Conference
“Modern Problems in Mathematics and its Applications”]. 2017. pp. 30–
41. http://ceur-ws.org/Vol-1894/.

[14] D. Bahle, H. E. Williams, J. Zobel, “Efficient phrase querying with an
auxiliary index,” SIGIR '02 Proceedings of the 25th Annual
International ACM SIGIR conference on research and development in
information retrieval. Tampere, Finland, August 11–15, 2002, pp. 215–
221.

[15] M. Chang, Chung Keung Poon, “Efficient phrase querying with
common phrase index,” ECIR 2006, LNCS 3936, Springer-Verlag
Berlin Heidelberg, 2006, p. 61–71.

[16] Shashank Gugnani, Rajendra Kumar Roul, “Triple indexing: an efficient
technique for fast phrase query evaluation,“ International journal of
computer applications, 2014, vol.87, no 13, pp. 9–13.

Cite this paper as:
Veretennikov A.B. (2019) Proximity Full-Text Search with a Response Time Guarantee by Means of Additional Indexes. In: Arai
K., Kapoor S., Bhatia R. (eds) Intelligent Systems and Applications. IntelliSys 2018. Advances in Intelligent Systems and
Computing, vol 868, pp 936-954. Springer, Cham

