
A.B. Veretennikov Relevance ranking for proximity full-text search

MSC2010: 68P20, 68P10

c© A.B. Veretennikov

RELEVANCE RANKING FOR PROXIMITY FULL-TEXT SEARCH BASED

ON ADDITIONAL INDEXES WITH MULTI-COMPONENT KEYS

Indexing: Web of Science, Scopus.

This is the English translation performed by the author of the original Russian

paper.

A.B. Veretennikov. Relevance ranking for proximity full-text search based on additional in-
dexes with multi-component keys, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika.
Komp’yuternye Nauki, 2021, vol. 31, issue 1, pp. 132–148.
https://doi.org/10.35634/vm210110

http://vst.ics.org.ru/journal/article/3051/

The problem of proximity full-text search is considered. If a search query contains high-frequently
occurring words, then multi-component key indexes deliver an improvement in the search speed
compared with ordinary inverted indexes. It was shown that we can increase the search speed by
up to 130 times in cases when queries consist of high-frequently occurring words. In this paper,
we investigate how the multi-component key index architecture affects the quality of the search.
We consider several well-known methods of relevance ranking, where these methods are of different
authors. Using these methods, we perform the search in the ordinary inverted index and then in
an index enhanced with multi-component key indexes. The results show that with multi-component
key indexes we obtain search results that are very close, in terms of relevance ranking, to the search
results that are obtained by means of ordinary inverted indexes.

Keywords: full-text search; search engines; relevance ranking; inverted indexes; proximity search;

three-component key indexes.

DOI: 10.35634/vm210110

When full-text search systems are considered, a search query consists of one or several
words, and a search result is a list of records. Each record includes information about the
document that contains the queried words and information about where in the document
the queried words occur. The list of records is sorted, with the most relevant records, i.e.,
the records that probably most exactly satisfy the needs of the user, are at the beginning
of the list. When a proximity full-text search is considered, the documents that contain
the queried words near one another are most important. If the queried words occur in
a document accidentally in different places, then this document reflects the needs of the
user in a minor way, in contrast to a document in which the queried words occur near one
another and, therefore, are connected with one another in the context of this document.
When a proximity full-text search is implemented, it is required that information about each
occurrence of each word be stored in the full-text index [1, 2]. In other words, the Word-
Level index is needed instead of the Document-Level index. Each record in the search results
usually contains information about the fragment of text that contains the queried words.
Moreover, this fragment of text should have the minimal length among such fragments. This

https://doi.org/10.35634/vm210110
http://vst.ics.org.ru/journal/article/3051/

2 Relevance ranking for proximity full-text search

Fig. 1. An example of word frequency distribution

information contains positions of the start of the fragment and of the end of the fragment in
the document.

Words in documents occur with different frequencies. An example of word frequency
distribution in texts, an illustration of Zipf’s law [3], is presented in Fig. 1. Therefore, the
search query execution time depends on the total number of occurrences of the queried words
in all the indexed documents. We can often see that a search system evaluates queries that
consist of only ordinary words quickly, in less than one second. However, if a query contains
a frequently occurring word, the search system requires much more time, for example, 20-30
sec., in order to evaluate the query and produce the search results. An example of such
behaviour with employment of Lucene is presented in [4]. In such cases, the user can say
that the system is unstable.

A search query can be considered a simple inquiry [5]. If the query processing time is
greater than one second, then the continuity of thought of the user can be interrupted, and,
therefore, the performance of the user can be decreased [5]. The recommended maximum time
of a simple inquiry is two seconds. To resolve this problem, the computational resources can
be increased. Another solution is to use additional indexes to increase the search speed. The
author of the current work proposed a method of full-text search based on the employment
of additional indexes [6–8]. In the current paper, we show that with these indexes we obtain
relevant results.

The third approach is based on a limitation of acceptable words that the user can search.
To achieve this, a list of stop words is defined. Then, these words are excluded from the
index and the search. This approach is limited, as the list of stop words cannot be long.

The fourth approach is early-termination [9–12]. The data in the indexes should be
ordered in a specific manner, and specific compatible relevance calculation methods should
be applied. If so, then some part of the data can be evaluated as irrelevant and skipped when
a search query is executed. However, when a proximity full-text search is required, these
methods do not allow us to achieve substantial results [4].

The author of the current paper developed a full-text search method based on the imple-
mentation of additional indexes. With these indexes, the search query speed was increased
by up to 130 times compared with ordinary indexes [4]. Search queries consisted of very
commonly occurring words. In [13], arbitrary queries were considered. Here we estimated
the average number of index records, i.e., postings, that are required to be read from the disk
when a search is performed. This number was up to 263 times lower when additional indexes
were used, in contrast to the case when only ordinary inverted indexes were employed. The
search time can be significantly different when different index parameters or text collections
are used. However, these results show that our method based on additional indexes is a

A.B. Veretennikov 3

perspective method.

The results of the current work are following. When additional indexes are used, the
search results are very similar in terms of relevance to the search results obtained with
ordinary indexes. This was confirmed by experiments. We used the well-known GOV2 text
collection in all experiments. We determined a set of relevance calculation methods, which
allowed us to achieve a good level of aforementioned similarity. When these methods are
used, the search results obtained with our additional indexes are very similar to the search
results obtained with ordinary inverted indexes. We developed a method to compare the
different search results obtained with the employment of different indexes. We developed
a method to calculate the metrics and statistical values that are required to calculate the
relevance when additional indexes are used. We then defined a two-step search method that
can be used for text collections, which consist of small documents.

A significant part of the paper is dedicated to the following theoretical questions: a review
of different search methods; an examination of the strong sides of the proposed additional
indexes; selection of a method that can be used to compare different search results produced
from different types of indexes; and a discussion of methods that can increase the search
quality when our additional indexes are used. Then the results of the experiments and their
analysis are presented.

An inverted index is the data structure that is used for full-text search [14, 15]. For each
occurrence of each word in each document, a posting is stored in the index. The posting is
the record (ID, P). Here, ID is the identifier of the document, and P is the position of the
word in the document. An inverted file is the associative array, which allows us to obtain a
list of postings for a specific key, for example, for a word.

When nextword indexes [16] are used, a key consists of two words. The value of the key
is the list of postings, where each posting corresponds to an occurrence of these two words
in the text in a consecutive manner, that is, one is immediately after another. A phrase can
also be considered as a key [16]. Such indexes can be used to optimize the phrase search;
that is, when the user searches for a document that contains the specified phrase. In this
case, the queried words should occur in the document one immediately after another in the
correct order. If a document contains the queried words, but another word occurs between
the queried words in the text, then this document cannot be found by nextword or phrase
indexes. Therefore, the application of these indexes is limited.

Can stop words be excluded from the search? If we exclude some set of high-frequently
occurring words from the search, then the performance problem can be solved. However,
modern search systems, such as Google, allow the user to search documents that contain
any words. Sometimes, high-frequently occurring words can have a specific meaning in the
context of a specific search query. In this case, exclusion of such a word from the search can
lead to unpredictable effects [4, 16]. For example, consider the following search query: “who
are you who”. Here, the second word “who” is the name of an English rock band and “who
are you” is the title of one of their works. In addition, information about stop words can be
used for the relevance calculation [17]. Our goal is to provide a fast search for any query.
Therefore, we include information about all words in our indexes.

When early-termination [9–12] is used, postings are sorted in the index in a specific way.
Consider a list of postings. At the beginning of the list, the postings that correspond to the
most relevant documents occur, while at the end of the list, the postings that correspond to
low relevant documents occur. This approach allows us to stop the reading of the posting
list when appropriate criteria are met, for example, when a required number of relevant
documents is already found. However, this approach has limited applications to proximity
full-text searches. There can always be a document that contains the queried words near one

4 Relevance ranking for proximity full-text search

another, but whose postings occur at the end of the posting list of some queried word.
The goal of the current paper is following. When our additional indexes are used, for

each word of each document, we store information about other words that occur near this
word. A word occurs near another word if the distance between them is less than or equal
to MaxDistance, where, MaxDistance is a parameter that can have a value of 5, 7, 9 or
even greater. However, imagine that some of the queried words occur in a document at
a distance that is greater than MaxDistance. For example, MaxDistance is equal to 9,
and there is a document in which two words that we are searching for occur at a distance
of 10 between them. A potential search result will be omitted in the search. This means
that when our additional indexes are used, we receive fewer results compared to ordinary
indexes. An important question here is the following: are the “omitted” results relevant?
Most likely, search results in which queried words occur far from one another are not relevant,
not important, and can be excluded. In this case, the applicability of our additional indexes
will be justified.

In modern relevance calculation methods, this factor has already been taken into account.
Let us consider the occurrence of two queried words in a document. In many methods, the
relevance score of such an occurrence is inversely proportional to the square of the distance
between these words in the document. Such a value is near zero if the words are far from one
another. In the following sections, we consider several relevance calculation methods that
have been proposed by different authors for proximity full-text search. For each method, we
do the following. First, we apply it in the search based on the ordinary inverted index. Then
we apply the method in the search in which our additional indexes are used. We consider
the search results obtained from the ordinary inverted index as basic. Then, we compare the
search results obtained from our additional indexes with the basic search results. We check
whether all relevant documents that are presented in the basic results also exist in the results
obtained using our additional indexes. We then estimate how these two search result sets are
similar to one another in terms of relevance.

1. Relevance calculation methods

Let us consider some search results, which are sorted in terms of relevance. The documents
occur in the search results in the order of relevance, from a high relevance to a low relevance.
This can easily be done if a relevance function exists. Such a function that produces a number,
that is, the relevance score, for every search result, can be used. For example, BM25 [18] or
TF-IDF [19].

When the proximity full-text search is considered, it is often assumed that the relevance
score of the document is inversely proportional to the square of the distance between the
queried words within the document [20]. Let us consider the search query that consists
of two words, letting A and B be the positions of these words in the document. Then,
TP = 1/(A − B)2, where TP is the relevance score of the document in the context of the
proximity between the queried words in the text. This approach can easily be extended for
a search query Q, which consists of n words [7]. Let X = X1, . . . , Xn be positions of the
queried words in the document. Then,

TP (X) = 1
/(

|A(X)− B(X)| − (n− 2)
)2

, in which A(X) = min
16i6n

Xi, B(X) = max
16i6n

Xi.

The relevance of a document can be defined in the following way. First, the search results
should be sorted in accordance with the value of TP . Then, each sub-list of the search

A.B. Veretennikov 5

results, where each search result has the same value of TP , should be sorted in accordance
with the value of BM25 or TF-IDF. These methods are denoted as RTP,BM25 and RTP,TF-IDF,
respectively.

On the other hand, when the proximity full-text search is considered, the relevance func-
tion can be specified as the weighted sum of several other functions. In [20], the following
relevance function was proposed: R = α·SR+β·IR+γ·TP , in which α, β, γ ≥ 0, α+β+γ = 1.

Here, SR is a static document rank, such as PageRank [21], IR is an information retrieval
rank, such as BM25 or TF-IDF, in which the queried words are taken into account, and TP
is a proximity rank, in which proximity information, that is, information about distances
between the queried words in the document, is taken into account. The parameters, α, β,
and γ are the weights of the SR, IR, and TP , respectively. The values of SR, IR, and TP
are normalized, that is, each value belongs to the [0, 1] interval. We denote this method as
RWeiSum,α,β,γ, or, RWeiSum,0.1,0.4,0.5, for example, when a specific values of the parameters are
selected. When the following experiments were conducted, we used a text collection without
the calculated SR values. Therefore, we used α = 0. We used BM25 as the IR rank function.

Some ranking functions are defined for the entire document, for example, BM25. Other
functions are defined in the context of a fragment of a text within which the queried words
occur, and such functions can depend on the distance or the order of the queried words in
the text. Therefore, more than one query result can exist for one document. We can have
several search results for a single document, with different values of the relevance score. For
example, if the queried words occur in the document in two different places, we have two
search results. For these two search results, we have the same value of BM25 but can have
different values of TP . In the search result list, we can have several search results for the
same document. For these search results, we can have the same or different values for the
relevance score, which depends on the selected relevance function.

The relevance score can be defined based on intervals. In one of the methods [22], all
variants of the queried word occurrences should be considered, and then the relevance score
of the document should be calculated. The method in [22] is based on the approaches
[23,24]. Let X = X1, . . . , Xn be some positions of the queried words in the document. Then
[A(X), B(X)] is the interval that covers the queried words. The interval should be minimal;
that is, it should contain all of the queried words, but should not contain an interval of a
lesser length that also contains all of the queried words. The document can contain several
suitable intervals that can be far from one another. For each interval a relevance score
should be calculated. Then the relevance score of the document is defined as the sum of
the calculated relevance scores of these intervals. The final relevance score is defined for the
entire document, not just for a part of it. In general, intervals that contain some subset of the
queried words can also be considered. Different methods of calculating the interval relevance
score can be used.

Let us define the following subsets of documents [23]: D1, D2, . . . , D|Q|. Here, |Q| is the
length of query Q. Let D1 be a subset of documents, each of which contains one of the
queried words, let D2 be a subset of documents, each of which contains two of the queried
words, etc. Let D|Q| be a subset of documents, each of which contains all of the queried
words. When a list of relevant documents is determined, these subsets are examined in
reverse order, starting with D|Q|. If the required number of relevant documents is found in
D|Q|, then the remaining subsets are no longer needed. That is, first, the documents that
contain all of the queried words are important. The relevance score or weight of the interval
I = [p, q] in document D, where p is the start of I and q is the end of I, are defined as follows:
ScoreClarke et al.(I,D) = min (K/(q − p+ 1), 1), where K = 16.

The relevance score of the document is defined as follows. Let us search for all suitable

6 Relevance ranking for proximity full-text search

intervals in the document. Then we calculate the relevance score for each interval and sum
these values. Please note that the relevance score of an interval here is inversely proportional
to the length of the interval (not to the square of the length of the interval).

We consider such relevance calculation functions in a limited way. We consider only
intervals that contain all of the words of the search query. To consider all possible intervals,
we need to implement a complex search algorithm. We already implemented several different
search algorithms that apply to different query types (see later). Because, for different query
types we should use different additional indexes [4, 7]. In [23], first, the documents that
contain all of the words of the search query are processed; therefore, the aforementioned
limitation is not critical for an analysis of the method from [23]. We denote this method as
RIntervalSum. We then assume the following. If the applicability of our additional indexes will
be shown in these limited conditions, then they will work fine and without these limitations.
In the future, we plan to implement a more complex search algorithm. In the future algorithm,
we plan to take all intervals that contain some of the words of the search query into account.

In [24], the text of the document is scanned from left to right. In this process, a list of
intervals is obtained. If some words of the search query are near one another in the text,
then these words are placed in one interval. Different intervals contain different numbers of
queried words. Let us consider the search query Q and document D. Then,

BM25(Q,D) =
∑

e∈Q

We

TF (D, e)(1 + k1)

TF (D, e) +K
, where K = k1 ×

(

1− b+
b× |D|

avg(|D|)

)

,

where k1 and b are parameters and TF (D, e) is the term frequency of the lemma or word
e in document D. Usually, TF (D, e) is the total number of occurrences of e in D. Let |D|
be the length of D, that is, the total number of words in the document, and let avg(|D|) be
the average document length in the indexed collection of the documents. For the value of
We, IDF can be used, as can other metrics [22].

In [24], a similar formula was used, in which TF (D, e) was replaced by rc(D, e). The
latter rc is defined by the sum of the relevance scores of intervals containing the word or
lemma e. The relevance score of an interval I is defined by the following formula:

ScoreSong et al.(I,D) =
nλ
i

(q − p+ 1)γ
.

This is done in similar way in [23]. Here, ni is the number of queried words that occur in
the interval I, and λ and γ are the parameters.

In [22], when the relevance score of an interval is calculated, the IDF weights of the words,
which occur at the start or at the end of the interval (that is, the interval’s boundary terms),
are taken into account and BM25-like constructions are used. The authors of [22] stated that
BM25 generally works well accordingly [25]. The relevance score of the interval I = [p, q] is
defined as follows:

ScoreLu et al.(I,D) = Wl ·Wr · (q − p+ 1)−2,

where Wl, and Wr are the IDF weights of the lemma that occurs at the start of the interval
and the lemma that occurs at the end of the interval, respectively. This leads to the following:
the relevance scores of the intervals, in which the boundary terms are frequently occurring
words, decrease. The relevance score of the document is then calculated by the BM25-like
formula, as in [24]. Let I = I(Q′) be a set of intervals, where each interval contains a
subquery Q′. Then,

ScoreLu et al.(Q
′, D) =

∑

I∈I ScoreLu et al.(I,D) · (1 + k1)
∑

I∈I ScoreLu et al.(I,D) +K ′
, where K ′ = K·

(

∑

e∈Q′

min(We, 1)

)

,

A.B. Veretennikov 7

and We is the IDF weight of e. Let λ be a parameter with a representative example value
of 0.4 as in [22]. To calculate the relevance score Rel of the document, all subqueries of the
search query Q are considered. Two sets of subqueries are also considered. Let Q be the set
of all subqueries of the search query Q, and let Q′ be the set of all subqueries of the search
query Q, in which the order of the words is the same as in Q. Then,

RelLu et al.(Q,D) = (1− λ) · BM25(Q,D)+

λ ·
∑

Q′∈Q

ScoreLu et al.(Q
′, D) + λ ·

∑

Q′∈Q′

ScoreLu et al.(Q
′, D).

We calculate the approximate value of this function, only considering intervals that con-
tain all of the words of the search query. We denote this method as RIntervalOpt.

In modern search systems, a two-level relevance calculation process is often used [26,
27]. Two ranking mechanisms are applied one after another. The first mechanism forms
a preliminary result set and excludes obviously non-relevant results. Already considered
relevance functions, such as BM25, can be used here. The second mechanism processes
the preliminary result set and calculates the final relevance scores of the documents based on
different features of each search result, such as: BM25, TF-IDF, document length, PageRank,
the first position of a queried word in the document, distance between the queried words in
the document, etc. For every document or search result, we have a vector of numbers that
represents these features of the search result.

The second mechanism can be implemented using machine learning techniques, such
as artificial neural networks [28], genetic algorithms [29], and gradient boosting [27]. To
construct the relevance function, a test document collection is used with a specific set of
test queries. For each test query, the list of relevant documents is given, and for each of
these documents, the feature vector and the relevance score values are also presented. After
the relevance function, such as an artificial neural network, for example, is constructed, this
function allows us to calculate the final relevance score of arbitrary documents in the context
of an arbitrary search query based on the feature vector of the document. The first mechanism
is usually low-cost and works quickly. While the second mechanism works slowly, it improves
the quality of the search results.

In the current work, we analyze the relevance functions, which can be used as part of
the first mechanism. Their results can be used for a second-level mechanism. A second-
level mechanism is based on the results of a first-level mechanism. Therefore, if a first-level
mechanism provides similar results in both cases, that is, when additional indexes are used
and when ordinary indexes are used, then the second-level mechanism will also work fine in
both cases. Let us consider several relevance functions, and for each function, conduct an
experiment as follows.

Let us select a test query set. For each query we perform the following.

• We evaluate the query using the ordinary inverted index. The first result set is obtained.

• We sort the first result set according to the relevance function.

• We evaluate the query using our additional indexes. The second result set is obtained.

• We sort the second result set according to the relevance function.

• We compare both result sets.

If both results sets are similar, then our additional indexes can be applied for a full-text
search with this relevance function, where the search is performed without a loss of quality.

8 Relevance ranking for proximity full-text search

We consider the following relevance functions.

• RTP,BM25, RTP,TF-IDF,

• RWeiSum,0,0.75,0.25, RWeiSum,0,0.5,0.5, RWeiSum,0,0.25,0.75, RWeiSum,0,0.1,0.9,

• RIntervalSum – sum of the relevance scores of the intervals,

• RIntervalOpt – BM25-like constructions and sum of the relevance scores of the intervals,

• RIntervalSumSq – sum of the relevance scores of the intervals, such as RIntervalSum, but
the relevance score of an interval is defined as for RWeiSum,0,0.75,0.25. That is, the weight
of an interval is inversely proportional to the square of the length of the interval, but
not to the length of the interval.

These functions represent the following relevance calculation methods.

1 First, define the list of relevant documents using the proximity between the queried
words in the text as the criteria of relevance. Second, refine the list of relevant docu-
ments using a relevance function that does not depend on the positions of the queried
words in the text (RTP,BM25, RTP,TF-IDF).

2 Use a weighted sum in which the following components are presented. First, a com-
ponent that takes the proximity between the queried words in the text into account.
Second, a component that does not depend on the positions of the queried words in the
text (RWeiSum,0,0.75,0.25, RWeiSum,0,0.5,0.5, RWeiSum,0,0.25,0.75 and RWeiSum,0,0.1,0.9).

3 Let us consider a document. The relevance score is defined for entire document. Inter-
vals that contain the queried words are then collected. The lengths of these intervals
are used to obtain the relevance score of the document (RIntervalSum and RIntervalSumSq).

4 Consider a set of intervals, each of which contains the queried words. Information about
the lengths of these intervals is then combined with IDF information in a BM25-like
manner (RIntervalOpt).

2. Search result comparison

Let us consider a search query Q. Let Ideal be the list of search results obtained in the
search in the ordinary inverted index, and let Instance be the list of search results obtained
in the search when our additional indexes are used. Every item in a list of search results
contains the following fields.

ID – the identifier of a document.
P – the position of the start of a fragment of the text that contains the queried words.
L – the length of the aforementioned fragment of the text.
R – the relevance score of the search result (a floating-point number).
We need to compare these two lists of search results as two vectors. Moreover, we need

to obtain a numerical value that represents the degree to which these two lists are different
from one another. We use the following metrics for this.

Levenshtein distance [30].

A.B. Veretennikov 9

Precision [31].

NDCG (Normalized Discounted Cumulative Gain) [32, 33].

To use these metrics, we need to define conditions when two records X and Y , both
of which have structures (ID, P, L), are equal to one another. These conditions are the
following.

1) X.ID = Y.ID,

2) EP (X) = EP (Y).

Here EP (V) = V.P when V.L < LRD, and EP (V) = −1 otherwise.

LRD is a parameter with a representative example value of 50.

We use condition 2) to address the following issue. If two words occur in a text at a
large distance (> 50, for example), then the exact value of this distance is irrelevant. It only
matters that these two words are far from one another. Let us consider two search results X
and Y , which are related to the same document, that is, X.ID = Y.ID. If in both cases, that
is, X and Y , the queried words occur in the document far from one another, then we consider
that X and Y are equal. The distance between the queried words in the document can be
different for X and Y , but this does not matter. Please note that modern search systems
present to the user a fragment of text that contains the queried words for every search result.
For Google, the length of such a fragment is approximately 15-30 words.

The aforementioned definition is important when a two-step search process (see more
about this later) is employed when we search with additional indexes [6].

Let us consider a number N . Let IdealN be the list that consists of the first N elements of
Ideal. Similarly, let InstanceN be the list that consists of the first N elements of Instance.
Let us compare IdealN and InstanceN . For a specific value of N , we denote Precision as
P@N .

Precision(N) = P@N = |IdealN ∩ InstanceN |/|InstanceN |.

We consider the list IdealN as the list of relevant documents. This list is obtained when
the search is performed with an ordinary index.

We estimate the relevance of the list InstanceN in relation to the IdealN .

We then need to calculate P@N . We calculate the number of relevant documents that are
contained in InstanceN . That is, the number of InstanceN elements that are also contained
in IdealN . We should divide this number on the length of InstanceN .

We also calculate the Levenshtein distance between IdealN and InstanceN .

For a specific value of N , we denote the value of DCG (Discounted Cumulative Gain) as
DCG@N .

DCG@N =
N
∑

i=1

2Rel(Instance[i]) − 1

log2(i+ 1)
,

where Rel(Instance[i]) is the relevance score of the i-th record of Instance. The nu-
meration of Instance’s elements begins with 1. The value of Rel(x) is defined based on the
relevance scores of the elements of Ideal. However, x can be an element of an arbitrary
search result list. Let x be a record (ID, P, L,R), an element of Instance. We need to define
Rel(x). We need to find a record y in Ideal that is equal to x. To compare x and y, we use
the values of the ID, P, L fields. If such a record y is found in Ideal, then Rel(x) = y.R.

For a specific value of N , we denote the value of IDCG (Ideal Discounted Cumulative
Gain) as IDCG@N . This value is then calculated in the same way as DCG but for Ideal.

10 Relevance ranking for proximity full-text search

IDCG@N =

N
∑

i=1

2Rel(Ideal[i]) − 1

log2(i+ 1)
,

where Rel(Ideal[i]) is the relevance score of the i-th record of Ideal. The numeration of
Ideal’s elements also begins with 1. That means that Rel(Ideal[i]) = Ideal[i].R.

For a specific value of N , we denote the value of NDCG (Normalized Discounted Cumu-
lative Gain) as NDCG@N and calculate it as follows.

NDCG@N = (DCG@N)/(IDCG@N).

Please note that 0 ≤ NDCG@N ≤ 1.
If the value of NDCG@N is near 1, then our goal is achieved. This means that when we

search with our additional indexes, our search results are relevant and similar to the search
results that are obtained with the ordinary index. The notion of similarity between different
search results is defined here in terms of relevance.

Let us consider RTP,BM25 and RTP,TF-IDF. In these cases, the relevance scores, that is, the
values of the R component, are not defined in the search results. This is because the two-level
sorting process is implemented here. Therefore, in these two cases we define Ideal[i].R = 1/i.

NDCG is better than Precision and the Levenshtein distance, because to calculate
NDCG, we take the numerical values of the relevance scores into account. Let us con-
sider the following example. Let the first two documents in Ideal be highly relevant. Let
us imagine that Ideal also contains 100 low relevance documents. The relevance scores for
these low relevance documents are near 0. Let N be 30, and let us calculate NDCG. The
absence of some low relevance documents in Instance will not be a problem.

However, when we calculate Precision or the Levenshtein distance the following occurs.
The absence of some low relevance documents in Instance can lead to an incorrect interpre-
tation of these metrics. These metrics can show to us that we have a lower search quality
than we truly have. When NDCG is calculated, we do not have such issue.

Let us examine a dynamic of changes in the Precision and the Levenshtein distance when
different values of N are considered. Let N be a small number. In this case, we see to what
degree the results of the search with the additional indexes contain the same highly relevant
documents obtained by a search with the ordinary index. In other words, a high value of
NDCG@N when N is an arbitrary number should correspond to high values of Precision
and the Levenshtein distance that are calculated when N is a small number. However, the
values of Precision and the Levenshtein distance can decrease with an increase in N , but
that does not mean that the search quality is low.

The NDCG metric is considered a primary metric and is often used when search quality
is investigated, when some search result lists are compared with the ideal search results. The
ideal search results can often be selected manually. However, in our case we consider the
search results obtained by the search in the ordinary index to be ideal search results. In
the following experiments, we evaluate some number of test search queries and calculate the
average values of the aforementioned metrics.

3. Lemmatization and additional indexes

We employ a morphological analyzer. For a word, the analyzer provides a list of basic
forms, that is, lemmas. The dictionary of the analyzer contains approximately 92 thousand

A.B. Veretennikov 11

English lemmas. Let FL be the list of all lemmas. Let FL be sorted in a decreasing order of
lemma occurrence frequency. Let FL-number of the lemma x, that is, FL(x), be the ordinal
number of x in FL.

Let us consider two arbitrary lemmas, x and y. We define that x < y when FL(x) <
FL(y).

Let the first SWCount elements of FL be stop lemmas. For example, “war”, “time”.

Let the next FUCount elements of FL be frequently used lemmas. For example, “beau-
tiful”, “red”.

Let all the following lemmas of FL be ordinary lemmas. For example, “glorious”, “promis-
ing”.

Here, SWCount and FUCount are parameters.

GOV2 [34] text collection was used for the experiments. This text collection contains
mostly English documents. We only use the English dictionary, SWCount = 500 and
FUCount = 1050.

The value of SWCount = 500 is near 421, which was used in [35]. Please note that a word
can have several lemmas. For example, the word “mine” has two lemmas, namely, “mine” and
“my”.

We employ several types of additional indexes [7].

The three-component key (f, s, t) index is the list of the occurrences of lemma f in
which lemmas s and t both occur in the text at distances that are less than or equal to
the MaxDistance from f . Here, f , s and t are stop lemmas and f ≤ s ≤ t. Every posting
record in the index has the format (ID, P,D1, D2). Here, ID is the identifier of a document,
and P is the position of lemma f in the document, for example, the ordinal number of the
word in the document, D1 is the distance between f and s in the document, and D2 is the
distance between f and t in the document.

The two-component key (w, v) index is the list of occurrences of lemma w for which
lemma v occurs in the text at a distance that is less than or equal to the MaxDistance
from w. Here, w is a frequently used lemma and v is a frequently used or ordinary lemma.
Every posting record in the index has the format (ID, P,D). Here, ID is the identifier of a
document, P is the position of lemma w in the document and D is the distance between w
and v in the document.

The third additional index is the ordinary index with NSW (near stop word) records.
This index contains posting lists for frequently used and ordinary lemmas. For every lemma
x, the list of records (ID, P,NSW) is stored in the index. Here, ID is the identifier of a
document, and P is the position of lemma x in the document. NSW is the NSW record,
which contains information about all the stop lemmas that occur in the text near position
P , that is, at a distance that is less than or equal to MaxDistance, from P .

For example, let us consider the (ID, P,NSW ((war, 3), (time,−2))) record. In the doc-
ument, the stop lemma time occurs at a distance of (−2) from P , and the stop lemma war
occurs at a distance of 3 from P .

The key points of our research are the following.

We store information about all words, including those that are frequently occurring, in
the indexes.

We employ Word-Level indexes, and we use easy updatable indexes.

For each key, several data streams can be used.

In the search, each posting list, for each key, is read entirely.

We use the DAAT (Document-at-a-time) approach [17].

12 Relevance ranking for proximity full-text search

We have described the procedure of search query processing in [7] and [13]. This procedure
should be improved now because we need to calculate the relevance. To do so, the following
values are needed.

Let D be a document and x be a lemma. Let TF (D, x) be the number of occurrences of
x in D, and let DF (x) be the number of documents that contains x.

We can calculate TF (D, x) as follows.
If we read the posting list of x from the ordinary index with NSW records, we can then

calculate TF (D, x) in the process of this reading for each document. The value of DF (x)
will be calculated after the posting list is read entirely. Please note that NSW records are
stored in a separate data stream. They can therefore be skipped when they are not needed
for a specific search query.

Let us consider stop lemmas and all other lemmas x that satisfy the condition FL(x) < TS.
For these lemmas we use an additional DTA table. For each such lemma x, we perform the
following. We store TF (D, x) for each document D and x in DTA. We also store DF (x)
in DTA. Here, TS is a parameter, TS ≥ SWCount + FUCount. We build DTA in the
index construction process, and we store DTA in operational memory when searches are
performed. The amount of available operational memory is the primary factor that affects
the value of TS.

When an (f, s, t) or (w, v) posting list is read, we cannot calculate TF (D, x) or DF (x)
for any lemma. This is because (f, s, t) indexes contain information about only such occur-
rences when f , s and t were near one another in the text. Similarly, (w, v) indexes contain
information about only such occurrences when w and v were near one another in the text.
We have the same situation when we process NSW records and reconstruct postings for stop
lemmas from them. In all these cases we use DTA. There is also another table, namely, DL,
which is also stored in operational memory. For each document D, the value of DL(D) is
the length of D in words. Let AvgDL be the average document length in words, and let DC
be the total number of documents.

For each search algorithm, the values of TF (D, x) and DF (x) should be available for
every queried lemma. These values are used to calculate BM25 and TF-IDF.

Let us consider the following query types.
QT1. The query contains only stop lemmas. We use DTA to obtain the values of

TF (D, x) and DF (x). We employ (f, s, t) indexes.
QT2. The query contains only frequently used lemmas. We use DTA to obtain the values

of TF (D, x) and DF (x). We employ (w, v) indexes.
QT3. The query contains only ordinary lemmas. We obtain the values of TF (D, x) and

DF (x) when we read the posting lists. We use the ordinary index and skip the NSW records.
QT4. The query contains one or several stop lemmas. The query also contains frequently

used and/or ordinary lemmas. Let w be some queried lemma with the following conditions.
The lemma w should be a frequently used or ordinary lemma. Lemma w should have minimal
occurrence frequency among the queried lemmas. For lemma w, we use the ordinary index
and read the NSW records. Information stored in the NSW records allows us to take all
stop lemmas, which are presented in the search query, into account.

Let us consider another non-stop queried lemma v. The word index i of lemma v in the
query should be different from the word index of the first occurrence of lemma w in the query.
We can consider one of the following cases.

The notion word index here means the following. Consider the search query “who are
you who”. The search query consists of four words. Every word has its index in the query;
for example, the first word is “who”, the second is “are”, the third is “you” and the fourth is
“who”. To evaluate the query, all words of the query and their lemmas should be processed.

A.B. Veretennikov 13

1) If v is a frequently used lemma, then we can perform the following. We use the
(w, v) index instead of the (v) index. Thus, the (w, v) index allows us to obtain the list of
occurrences of lemma v, for which lemma v occurs near lemma w in the text. We use DTA
to obtain the values of TF (D, v) and DF (v).

2) If v is an ordinary lemma, FL(v) < TS and the search query contains a frequently
used lemma x with the word index j 6= i, then we can perform the following. We use the
(x, v) index instead of the (v) index, and we use DTA to obtain the values TF (D, v) and
DF (v).

3) If v is an ordinary lemma, FL(v) ≥ TS, then we can use the ordinary index (v).
However, the NSW records should be skipped. We obtain the values TF (D, v) and DF (v)
when we read the (v) posting list.

QT5. The search query contains at least one frequently used lemma, namely, w and
several ordinary lemmas. This case is similar to QT4. We can proceed here as in QT4.
However, NSW records should be skipped entirely.

We also have an alternative algorithm here. The Main-Cell algorithm [13] can be im-
plemented as follows. Let w be a queried lemma with the following conditions. Lemma w
should be a frequently used lemma, and should have a minimal occurrence frequency among
the frequently used queried lemmas. Let us consider all other queried lemmas, and let v be
some other queried lemma. We can use the (w, v) index. This (w, v) index contains the list
of occurrences of lemma w, for which lemma v occurs near lemma w in the text. Therefore,
we have a set of indexes. For each queried lemma, except w, we begin to read the index
(w, v). The data in the index are sorted in an increasing order. We shift in each index in
such a way that the current posting in each index has the same value, that is, (ID, P). If
we can do that, then we have a place in the document ID where all required lemmas are
presented near one another. We have the search result and store it in the search result list.
We obtain the values TF (D, v) and DF (v) in one of the following ways. If FL(v) < TS,
then we use DTA. Otherwise, we should read the (v) posting list from the ordinary index,
skipping the NSW records. The latter posting list is not used for the search. We only use
it to produce the values of TF (D, v) and DF (v). This is the third approach to obtain the
values of TF (D, v) and DF (v) for a specific lemma v when required.

For example, let us consider a search query “Scalable Vector Graphics”.
Here, FL(Scalable) = −1, FL(V ector) = 3227, and FL(Graphics) = 1075, “Graphics” is

a frequently used lemma, and the other lemmas are ordinary. We use the (graphics, scalable),
(graphics, vector) indexes for the search. In addition, the (scalable) index is used to obtain
the values of TF (D, v) and DF (v) for v = scalable. The NSW records are skipped.

Therefore, a larger value of TS, for example, 5000, makes the search faster.

4. Two-step search

If the queried words occur in a document at a distance that is greater than MaxDistance,
then our additional indexes cannot help find this document. To solve this problem, we can
perform two searches [6]. The first search is the proximity search. The second search is the
non-proximity search; that is, we search documents that contain the queried words anywhere
in the text. For the first search, we use our additional indexes, which are Word-Level indexes.
For the second search, we only use the Document-Level index. Let us consider a document. In
the Document-Level index, for every word in the document, we only store information about
the first occurrence of the word. This approach is successful when documents are relatively

14 Relevance ranking for proximity full-text search

large, for example, approximately 300 KB or greater. In this case, the non-proximity search
works fast. Such metrics as BM25 [18] and TF-IDF [19] are calculated for the entire document.
Therefore, all documents that are relevant by these metrics will be found in the second search.
The first search ensures that all documents that are relevant in the proximity sense, will also
be found.

Let us consider the ordinary index with NSW records. For each key, we store the list of
postings, where every posting has the structure (ID, P,NSW). This list of postings can be
stored in three data streams, namely, (ID), (P) and (NSW). This allows us to only read
the necessary information from the index. If we need a non-proximity search, then we only
read the (ID) data streams.

Let us consider a queried lemma v. If FL(v) ≥ TS, then TF (D, v) and DF (v) are
obtained in the first search and cached for the second search. If FL(v) < TS, then DTA
is used. If the posting list is short, then we can only create two data streams in the index,
namely, (ID, P) and (NSW). In this case, the total number of disk operations that are
required for the index construction can be decreased.

In the ordinary index with NSW records, the keys are frequently used and ordinary
lemmas. Let us also consider stop lemmas as keys for this index. However, for stop lemmas,
the NSW records are not stored. Moreover, for a stop lemma, only information about the
one occurrence, namely, the first occurrence, is stored per document. For a text collection
that consist of large documents, the two-step search process is organized in the described
manner.

However, GOV2 text collection consists of small documents. In GOV2, the average text
length of documents is approximately 7 KB. In this case, the non-proximity search can be
slow. Let us consider a frequently occurring word, and let us search this word. When a
large document is considered and we switch from the Word-Level index to the Document-
Level index, the search speed increases significantly. This is because, in order to process one
document, we need to read only one posting record instead of a long list of posting records.
For smaller documents, the search speed is increased, to a lesser degree.

To make the second search faster, we implement the following optimization. Let us
consider a search query Q. Let v be a lemma of Q where the condition FL(v) < TS is met.
Then we can evaluate Q excluding v and obtain the search results. Then, we post-process
the search results. We should exclude any document that does not contain v from the search
results. If TF (D, v) = 0, then the document D does not contain the lemma v.

Therefore, all lemmas v that satisfy the condition FL(v) < TS can be excluded from Q.
However, the new version of Q should contain at least one lemma. If for each queried lemma
v the condition FL(v) < TS is satisfied, then we should select one lemma, which remains
in Q. This remaining lemma is a queried lemma with a maximum FL-number among the
queried lemmas, that is, a lemma, which have a lesser occurrence frequency in the texts.

Let us consider the search query “Scalable Vector Graphics”.
In this query, FL(Scalable) = −1, FL(V ector) = 3227, and FL(Graphics) = 1075. We

use TS = 5000. Therefore, the new query should be “Scalable”. We evaluate this query and
obtain the search results. Then, we filter the search results. We exclude all documents that
do not contain “Vector” and “Graphics” from the search results.

When this optimization is used, the second search becomes significantly faster. Therefore,
the two-step search process can now also be applied to collections that consist of small
documents, for example, to GOV2.

Let us consider the second optimization. In some cases, we can use the Word-Level index
in the second search. If the first search provides a small amount of results, for example, less
than 15, then this optimization can be used. In this case, we reinforce the second search in

A.B. Veretennikov 15

the following manner.
1) We exclude only the stop lemmas from Q.
2) We use the Word-Level index instead of the Document-Level index. That means that

we process all posting records for non-excluded queried lemmas.
Our experiments show the following. Every query of the test query set was evaluated, and

the two-step search process was used. Let us consider the queries in the evaluation process
in which, the second optimization was used. The total time of the second search in these
evaluations equals 14.8% of the total search time (the total search time includes both steps).
The total time of the second search when all test queries are considered equals 39% of the
total search time.

5. Experiments

We used the well-known GOV2 text collection. The total size of the collection is approx-
imately 426 GB. The text collection consists of 25 million documents. If HTML tags are
removed, then there is approximately 167 GB of plain text. The average text length of the
documents is approximately 7 KB.

The test query test contains the following query sets:

• title queries from the TREC Robust Task 2004 (250 queries in total),

• title queries from the TREC Terabyte Task from 2004 to 2006 (150 queries in total),

• title queries from the TREC Web Task from 2009 to 2014 (300 in total), and

• title queries from the TREC Terabyte Task 2006 Efficiency Topics (10000 queries in
total).

Let us remove duplicates. The final test query set consists of 10690 queries.
We created two indexes as follows.
1) The ordinary inverted index.
2) Our additional indexes, which include the ordinary inverted index with the NSW

records and the (w, v) and (f, s, t) indexes, where MaxDistance = 12.
In [36], logs of a full-text search system were analyzed. The following was shown.

• The users examined 2.35 search result pages on average.

• Many users, 58% of them, examined only one page.

• Most users, 86% of them, examined no more than three pages.

• One page contained 10 search results.

The number of users that examined only one page increased over time [37]. At some
point, this number became 73% of all users for US search systems.

Moreover, in [36], the lengths of the search queries were analyzed. The following results
are shown.

• The average query length was 2.21 in words.

• Queries whose length is greater than 5 are very rare.

16 Relevance ranking for proximity full-text search

• The number of queries, whose length is 6, is approximately equal to 1% of the total
number of queries.

• Fewer than 4% of all queries had lengths greater than 6.

• The number of queries that consist of one to three words is approximately equal to 80%
of the total number of queries.

Therefore, we limit our analysis to the first three pages of the search results (the first 30
search results). We also carefully consider the first page of the search results. The test query
set contains the following.

• The number of queries whose length is less than or equal to 3 is 4710.

• The number of queries whose length is less than or equal to 5 is 8788.

In Table 1, the average values of Precision, the Levenshtein distance and NDCG are
shown in relation to the selected relevance functions. To calculate the metrics for a specific
query, first the first 10 search results were taken into account, and then the first 30 search
results were used.

The first three columns of the table correspond to cases when the first 10 search results
were used. The first column contains values that were calculated based on the queries whose
length is less than or equal to 3. For the second column, 5 was used as the limit of the query
length. For the third column, 9 was used.

The following three columns of the table correspond to the cases where the first 30 search
results were used. For the first of these columns, 3 is the limit of the query length, and 5 and
9 are the limits for the second and third columns.

Therefore, we show the results for the queries that contain no more than 3 words in a
separated column. This is an important case according to [36]. For this case, the search
with additional indexes shows good results for every relevance function. For RWeiSum,0,0.1,0.9,
we have NDCG@10 = 0.980. For RTP,BM25, RTP,TF-IDF, RWeiSum,0,0.5,0.5, RWeiSum,0,0.25,0.75,
RWeiSum,0,0.1,0.9, and RIntervalSumSq, the NDCG@10 values are greater than 0.96. When the
length of queries increases, the values of the metrics decrease insignificantly.

The NDCG values are closer to 1 than Precision. NDCG is a better metric than
Precision for at least two reasons. The first reason is the following: to calculate NDCG,
the values of the relevance scores need to be taken into account. A document that occurs
at the start of the search result list is more important than a document that occurs at the
end of this list. This is also considered when NDCG is calculated. Second, if NDCG is
greater than Precision, then the following can be the reason for it: if some search results
were missed in the search with our additional indexes in contrast to the ordinary search, then
these search results are probably low relevant.

For the RTP,BM25, RTP,TF-IDF, RWeiSum,0,0.1,0.9, and RIntervalSumSq metrics, the results are
the most promising, regardless of the query length. When the RIntervalSum metric is con-
sidered, the weight of an interval that contains the queried words is inversely proportional
to the length of this interval. The results for the RIntervalSum metric are significantly worse
than the results for metrics, in which the weight of the interval is inversely proportional to
the square of the length of the interval. Most likely, when our additional indexes are used, a
square dependence should be employed. Accordingly [20], the square dependence is used for
the majority of modern methods.

When the weighted sum methods RWeiSum,0,x,y are considered, the metrics show better
values when the weight of TP is increased. Moreover, NDCG@10 is greater than 0.95 when

A.B. Veretennikov 17

Table 1. The results of the experiments, L = |Q|

The average value of the Levenshtein distance
Функция 10, L ≤ 3 10, L ≤ 5 10, L ≤ 9 30, L ≤ 3 30, L ≤ 5 30, L ≤ 9
RTP,BM25 0.542 1.308 1.621 2.264 4.701 5.474
RTP,TF-IDF 0.497 1.264 1.571 2.096 4.527 5.283
RWeiSum,0,0.75,0.25 1.298 1.863 1.964 5.042 6.615 6.765
RWeiSum,0,0.5,0.5 1.039 1.585 1.722 4.162 5.773 6.039
RWeiSum,0,0.25,0.75 0.847 1.373 1.535 3.588 5.190 5.550
RWeiSum,0,0.1,0.9 0.751 1.262 1.449 3.293 4.955 5.410
RIntervalSum 2.929 4.562 5.150 10.480 15.636 17.215
RIntervalOpt 1.873 2.885 3.042 7.142 9.823 10.068
RIntervalSumSq 1.352 2.325 2.579 5.817 8.576 8.989

The average value of Precision
RTP,BM25 0.968 0.909 0.887 0.958 0.900 0.886
RTP,TF-IDF 0.971 0.913 0.892 0.960 0.904 0.890
RWeiSum,0,0.75,0.25 0.917 0.875 0.870 0.903 0.867 0.867
RWeiSum,0,0.5,0.5 0.938 0.898 0.891 0.925 0.890 0.886
RWeiSum,0,0.25,0.75 0.954 0.917 0.908 0.941 0.908 0.902
RWeiSum,0,0.1,0.9 0.962 0.929 0.918 0.951 0.918 0.912
RIntervalSum 0.771 0.644 0.595 0.765 0.637 0.593
RIntervalOpt 0.894 0.826 0.815 0.882 0.833 0.829
RIntervalSumSq 0.919 0.845 0.826 0.895 0.828 0.818

The average value of NDCG
RTP,BM25 0.978 0.932 0.911 0.976 0.927 0.906
RTP,TF-IDF 0.981 0.936 0.915 0.978 0.930 0.910
RWeiSum,0,0.75,0.25 0.950 0.917 0.911 0.919 0.884 0.882
RWeiSum,0,0.5,0.5 0.964 0.933 0.927 0.942 0.907 0.903
RWeiSum,0,0.25,0.75 0.973 0.948 0.941 0.958 0.927 0.921
RWeiSum,0,0.1,0.9 0.980 0.959 0.951 0.968 0.941 0.933
RIntervalSum 0.826 0.730 0.684 0.800 0.696 0.653
RIntervalOpt 0.948 0.906 0.896 0.909 0.860 0.853
RIntervalSumSq 0.965 0.904 0.882 0.934 0.867 0.847

18 Relevance ranking for proximity full-text search

Fig. 2. The NDCG@N values for RIntervalOpt

RWeiSum,0,0.1,0.9 is used, regardless of the query length. Most likely, the value of TP decreases
very fast when the length of the interval increases and the weight of the interval is inversely
proportional to the square of the length of the interval. Perhaps we should adopt the approach
from [24]. In [24], some floating-point parameter γ ∈ [1, 2] was introduced. The weight of
the interval can then be defined as inversely proportional to the length of the interval raised
to the power of γ.

Let us consider the RIntervalOpt metric. In this case, the metric values decrease significantly
when longer queries are considered. For example, NDCG@10 = 0.948 when queries that
contain no more than three words are considered. However, NDCG@10 = 0.896 when
queries with lengths up to 9 are considered.

In Fig. 2, we show NDCG@N for the RIntervalOpt metric.
In Fig. 3, we show NDCG@N for the RWeiSum,0,0.1,0.9 metric.
On the max|Q| axis, we plot the maximum query length for the queries, which are used

to calculate NDCG@N . On the N axis, we plot N , that is, the number of search results,
which are used to calculate NDCG@N . The NDCG@N value is shown in the 0.8 to 1 range.

When RIntervalOpt is considered we have the following. The NDCG@N value decreases
significantly when the max|Q| value is increased. However, the NDCG@N value does not
change significantly when N is changed.

When RWeiSum,0,0.1,0.9 is considered we have the following. The NDCG@N value decreases
insignificantly when the max|Q| value is changed.

We compare these two metrics for the following reasons. When RIntervalSum is used,
the results are the worst. Here, the weight of an interval is inversely proportional to the
length of the interval. This approach has little application when our additional indexes
are used. For RIntervalOpt, we have slightly better results and this method can have some
application. From an applicability point of view, RIntervalOpt, directly follows RIntervalSum.
When RWeiSum,0,0.1,0.9 is considered, the results are the best. Essentially, we compare the
worst and the best methods, which can be employed when our additional indexes are used.

6. Conclusion

A methodology to evaluate the search quality when additional indexes are employed was
presented. We considered several relevance calculation methods and established the following:

A.B. Veretennikov 19

Fig. 3. The NDCG@N values for RWeiSum,0,0.1,0.9

for several relevance calculation methods, the search results obtained in the search with
our additional indexes and the search results obtained in the search with ordinary inverted
indexes are similar in terms of relevance. When RTP,BM25, RTP,TF-IDF, RWeiSum,0,0.1,0.9, and
RIntervalSumSq metrics are used, the best results are achieved.

Let us consider RWeiSum,0,0.1,0.9. When the first ten search results are taken into account,
the NDCG value is larger than 0.95. The maximum possible value of NDCG is 1. The
NDCG metric is well-known and commonly used when the search quality is analyzed.

The two-step search method was enhanced to improve the search quality. First, the
proximity search is performed with our additional indexes. Second, the non-proximity or
partially-proximity search is performed with the ordinary index. The total time of both of
these steps is significantly less than the total time of the proximity search in the ordinary
index.

Future research can be performed in the following directions. The RIntervalOpt function is
calculated with the following approximation. Only intervals that contain all queried words
are taken into account. An algorithm that considers intervals that contain some subset of
the queried words can be useful. In our work, the set of all possible queries is divided
into several classes, namely QT1-QT5. Different algorithms were developed to process the
different classes or types of queries [4, 7]. We spent a significant amount of time unifying
the relevance calculation process for these different algorithms. It is important to develop a
unified search algorithm. In addition, it is interesting to consider other relevance calculation
methods and relevance functions.

REFERENCES

1. Sadakane K. Fast algorithms for k-word proximity search, IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences, 2001, vol. 84, issue 9,
pp. 2311–2318.

2. Gall M., Brost G. K-word proximity search on encrypted data, 30th International Confer-
ence on Advanced Information Networking and Applications Workshops (WAINA), 2016,
pp. 365–372. https://doi.org/10.1109/WAINA.2016.104

3. Zipf G.K. Selected studies of the principle of relative frequency in language, Harvard
University Press, 1932.

4. Veretennikov A.B. Proximity full-text search by means of additional indexes with multi-
component keys: in pursuit of optimal performance, Data Analytics and Management

https://doi.org/10.1109/WAINA.2016.104

20 Relevance ranking for proximity full-text search

in Data Intensive Domains. DAMDID/RCDL 2018. Communications in Computer and
Information Science, vol. 1003, Cham: Springer, 2019, pp. 111–130.
https://doi.org/10.1007/978-3-030-23584-0_7

5. Miller R.B. Response time in man-computer conversational transactions, Proceedings of
the December 9-11, 1968, fall joint computer conference, part I on - AFIPS ’68 (Fall,
part I), San Francisco, California, 1968, vol. 33, pp. 267–277.
https://doi.org/10.1145/1476589.1476628

6. Veretennikov A.B. Proximity full-text search with response time guarantee by means of
three component keys, Bulletin of the South Ural State University. Series “Computational
Mathematics and Software Engineering”, 2018, vol. 7, issue 1, pp. 60–77 (in Russian).
https://doi.org/10.14529/cmse180105

7. Veretennikov A.B. Proximity full-text search with a response time guarantee by means
of additional indexes, Intelligent Systems and Applications: Proceedings of the 2018 In-
telligent Systems Conference, Cham: Springer, 2018, pp. 936–954.
https://doi.org/10.1007/978-3-030-01054-6_66

8. Veretennikov A.B. An efficient algorithm for three-component key index construction,
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2019,
vol. 29, issue 1, pp. 117–132 (in Russian). https://doi.org/10.20537/vm190111
The English translation is available online at https://arxiv.org/abs/2006.07954

9. Anh V.N., de Kretser O., Moffat A. Vector-space ranking with effective early termination,
Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’01, 2001, pp. 35–42.
https://doi.org/10.1145/383952.383957

10. Garcia S., Williams H.E., Cannane A. Access-ordered indexes, ACSC ’04 Proceedings of
the 27th Australasian Conference on Computer Science, Dunedin, New Zealand, 2004,
pp. 7–14.

11. Lin J., Trotman A. Anytime ranking for impact-ordered indexes, Proceedings of the 2015
International Conference on The Theory of Information Retrieval, 2015, pp. 301–304.
https://doi.org/10.1145/2808194.2809477

12. Anh V.N., Moffat A. Pruned query evaluation using pre-computed impacts,
Proceedings of the 29th annual international ACM SIGIR conference on Re-
search and development in information retrieval - SIGIR ’06, 2006, pp. 372–379.
https://doi.org/10.1145/1148170.1148235

13. Veretennikov A.B. Efficient full-text search by means of additional indexes of frequently
used words, Sistemy Upravleniya i Informatsionnye Tekhnologii, 2016, vol. 66, issue 4,
pp. 52–60 (in Russian).

14. Zobel J., Moffat A. Inverted files for text search engines, ACM Computing Surveys, 2006,
vol. 38, issue 2, article 6. https://doi.org/10.1145/1132956.1132959

15. Yang Y., Ning H. Block linked list index structure for large data full
text retrieval, 13th International Conference on Natural Computation, Fuzzy
Systems and Knowledge Discovery (ICNC-FSKD), 2017, pp. 2123–2128.
https://doi.org/10.1109/FSKD.2017.8393099

16. Williams H.E., Zobel J., Bahle D. Fast phrase querying with combined indexes, ACM
Transactions on Information Systems (TOIS), 2004, vol. 22, issue 4, pp. 573–594.
https://doi.org/10.1145/1028099.1028102

17. Crane M., Culpepper J., Lin J., Mackenzie J., Trotman A. A comparison of document-at-
a-time and score-at-a-time query evaluation, Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, 2017, pp. 201–210.
https://doi.org/10.1145/3018661.3018726

https://doi.org/10.1007/978-3-030-23584-0_7
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.14529/cmse180105
https://doi.org/10.1007/978-3-030-01054-6_66
https://doi.org/10.20537/vm190111
https://arxiv.org/abs/2006.07954
https://doi.org/10.1145/383952.383957
https://doi.org/10.1145/2808194.2809477
https://doi.org/10.1145/1148170.1148235
https://doi.org/10.1145/1132956.1132959
https://doi.org/10.1109/FSKD.2017.8393099
https://doi.org/10.1145/1028099.1028102
https://doi.org/10.1145/3018661.3018726

A.B. Veretennikov 21

18. Robertson S. E., Walker S. Some simple effective approximations to the 2-Poisson model
for probabilistic weighted retrieval, SIGIR ’94, London: Springer, 1994, pp. 232–241.
https://doi.org/10.1007/978-1-4471-2099-5_24

19. Salton G., Yang C. S. On the specification of term values in automatic indexing, Journal
of Documentation, 1973, vol. 29, issue 4, pp. 351–372.

20. Yan H., Shi S., Zhang F., Suel T., Wen J.-R. Efficient term proximity search with term-
pair indexes, Proceedings of the 19th ACM international conference on Information and
knowledge management - CIKM ’10, Toronto, 2010, pp. 1229–1238.
https://doi.org/10.1145/1871437.1871593

21. Brin S., Page L. Reprint of: The anatomy of a large-scale hypertextual web search engine,
Computer Networks, 2012, vol. 56, issue 18, pp. 3825–3833.
https://doi.org/10.1016/j.comnet.2012.10.007

22. Lu X., Moffat A., Culpepper J. S. Efficient and effective higher order proximity modeling,
Proceedings of the 2016 ACM International Conference on the Theory of Information
Retrieval, 2016, pp. 21–30. https://doi.org/10.1145/2970398.2970404

23. Clarke C. L.A., Cormack G.V., Tudhope E.A. Relevance ranking for one to three term
queries, Information Processing and Management, 2000, vol. 36, issue 2, pp. 291–311.
https://doi.org/10.1016/S0306-4573(99)00017-5

24. Song R., Taylor M. J., Wen J.-R., Hon H.-W., Yu Y. Viewing term proximity from a
different perspective, Advances in Information Retrieval: Proceedings of 30th European
Conference on IR Research, Berlin: Springer, 2008, pp. 346–357.
https://doi.org/10.1007/978-3-540-78646-7_32

25. Trotman A., Puurula A., Burgess B. Improvements to BM25 and language models exam-
ined, Proceedings of the 2014 Australasian Document Computing Symposium on - ADCS
’14, 2014, pp. 58–65. https://doi.org/10.1145/2682862.2682863

26. Dang V., Bendersky M., Croft W.B. Two-stage learning to rank for infor-
mation retrieval, Advances in Information Retrieval: Proceedings of 35th Eu-
ropean Conference on IR Research, Berlin: Springer, 2013, pp. 423–434.
https://doi.org/10.1007/978-3-642-36973-5_36

27. Silva S.D.N., de Moura E. S., Calado P.P., da Silva A. S. Effective lightweight learning-
to-rank method using unified term impacts, IEEE Access, 2020, vol. 8, pp. 70420–70437.
https://doi.org/10.1109/ACCESS.2020.2986943

28. Mitra B., Diaz F., Craswell N. Learning to match using local and distributed representa-
tions of text for web search, Proceedings of the 26th International Conference on World
Wide Web, Republic and Canton of Geneva, Switzerland, 2017, pp. 1291–1299.
https://doi.org/10.1145/3038912.3052579

29. Silva T.P.C., de Moura E. S., Cavalcanti J.M.B., da Silva A. S., de Carvalho M.G.,
Gonçalves M.A. An evolutionary approach for combining different sources of evidence in
search engines, Information Systems, 2009, vol. 34, issue 2, pp. 276–289.
https://doi.org/10.1016/j.is.2008.07.003

30. Levenshtein V. I. Binary codes capable of correcting deletions, insertions, and reversals,
Soviet Physics Doklady, 1966, vol. 10, issue 8, pp. 707–710.

31. Makhoul J., Kubala F., Schwartz R., Weischedel R. Performance measures for informa-
tion extraction, Proceedings of DARPA Broadcast News Workshop, 1999, pp. 249–252.

32. Järvelin K., Kekäläinen J. Cumulated gain-based evaluation of IR techniques, ACM
Transactions on Information Systems, 2002, vol. 20, issue 4, pp. 422–446.

33. Liu T.-Y. Learning to rank for information retrieval, Berlin: Springer, 2011.
https://doi.org/10.1007/978-3-642-14267-3

https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1145/1871437.1871593
https://doi.org/10.1016/j.comnet.2012.10.007
https://doi.org/10.1145/2970398.2970404
https://doi.org/10.1016/S0306-4573(99)00017-5
https://doi.org/10.1007/978-3-540-78646-7_32
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1007/978-3-642-36973-5_36
https://doi.org/10.1109/ACCESS.2020.2986943
https://doi.org/10.1145/3038912.3052579
https://doi.org/10.1016/j.is.2008.07.003
https://doi.org/10.1007/978-3-642-14267-3

22 Relevance ranking for proximity full-text search

34. Büttcher S., Clarke C., Soboroff I. The TREC 2006 terabyte track, Proceedings of the
Fifteenth Text REtrieval Conference, TREC 2006, 2006, pp. 128–141.

35. Fox C. A stop list for general text, ACM SIGIR Forum, 1989, vol. 24, issue 1–2, pp. 19–
35.
https://doi.org/10.1145/378881.378888

36. Jansen B. J., Spink A., Saracevic T. Real life, real users, and real needs: a study and
analysis of user queries on the web, Information Processing and Management, 2000,
vol. 36, issue 2, pp. 207–227. https://doi.org/10.1016/S0306-4573(99)00056-4

37. Jansen B. J., Spink A. How are we searching the World Wide Web? A comparison of nine
search engine transaction logs, Information Processing and Management, 2006, vol. 42,
pp. 248–263. https://doi.org/10.1016/j.ipm.2004.10.007

Received 11.10.2020

Veretennikov Alexander Borisovich, PhD, Associate Professor, Chair of Calculation Mathematics
and Computer Science, Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620083, Russia.
ORCID: https://orcid.org/0000-0002-3399-1889
E-mail: alexander@veretennikov.ru

Citation: A.B. Veretennikov. Relevance ranking for proximity full-text search based on additional
indexes with multi-component keys, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika.

Komp’yuternye Nauki, 2021, vol. 31, issue 1, pp. 132–148. https://doi.org/10.35634/vm210110

See also:
http://www.veretennikov.ru/
http://www.veretennikov.org/Default.aspx?f=Publish%2fDefault.aspx&language=en

https://doi.org/10.1145/378881.378888
https://doi.org/10.1016/S0306-4573(99)00056-4
https://doi.org/10.1016/j.ipm.2004.10.007
https://orcid.org/0000-0002-3399-1889
https://doi.org/10.35634/vm210110
http://www.veretennikov.ru/
http://www.veretennikov.org/Default.aspx?f=Publish%2fDefault.aspx&language=en

