

© A. B. Veretennikov

An efficient algorithm for three-component key index construction

Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, vol. 29,

issue 1, pp. 117-132.

Indexing: Web of Science, Scopus.

This is the English translation performed by the author of the original Russian paper.

https://doi.org/10.20537/vm190111

http://vm.udsu.ru/issues/archive/issue/2019-1-11

alexander@veretennikov.ru

In this paper, proximity full-text searches in large text arrays are considered. A search query consists of

several words. The search result is a list of documents containing these words. In a modern search

system, documents that contain search query words that are near each other are more relevant than

documents that do not share this trait. To solve this task, for each word in each indexed document, we

need to store a record in the index. In this case, the query search time is proportional to the number of

occurrences of the queried words in the indexed documents. Consequently, it is common for search

systems to evaluate queries that contain frequently occurring words much more slowly than queries

that contain less frequently occurring, ordinary words. For each word in the text, we use additional

indexes to store information about nearby words at distances from the given word of less than or equal

to MaxDistance, which is a parameter. This parameter can take a value of 5, 7, or even more. Three-

component key indexes can be created for faster query execution. Previously, we presented the results

of experiments showing that when queries contain very frequently occurring words, the average time of

the query execution with three-component key indexes is 94.7 times less than that required when using

ordinary inverted indexes. In the current work, we describe a new three-component key index building

algorithm and demonstrate the correctness of the algorithm. We present the results of experiments

creating such an index that is dependent on the value of MaxDistance.

Keywords: full-text search, search engines, inverted files, additional indexes, proximity search, three-

component key indexes.

In this paper, we continue our research [1]. In the development of modern methods of full-text

search, documents that contain queried words near each other are considered more important and

relevant [1–4]. The importance of taking proximity information into account in the calculation of

relevance increases for larger text collections [3]. At the same time, we need to guarantee that the

search time is limited by reasonable boundaries. However, for large text collections, the probability of

performance problems related to the search time increases.

Inverted indexes are used for the implementation of the full-text search [5–8]. To take into

account the distance between words in the text, we need to store in the index information about

every occurrence of every word of every indexed text. Words occur in texts with different frequencies.

A typical word frequency distribution in texts [9] (Zipf’s law) is presented in Fig. 1. The horizontal axis

is used to represent words, with high-frequently occurring words on the left side to low-frequently

occurring words on the right side. On the vertical axis, we plot the total number of occurrences in the

texts of each word.

The search time is proportional to the total number of occurrences of the queried words in the

indexed texts. Therefore, queries that contain high-frequently occurring words can require

significantly more time for evaluation (see Fig. 1, on the left side) than queries that consist of

ordinary words (see Fig. 1, on the right side). According to [10], the search query, which we consider

a “simple inquiry”, should be evaluated within two seconds or less. Otherwise, the continuity of the

thought of the user could be interrupted, and this interruption could negatively affect the

performance of the user. When ordinary inverted files are used, queries that contain high-frequently

occurring words often require much more time for evaluation. To solve this performance problem,

the author uses additional indexes [1, 11, 12]. Advantages of the proposed approach and a

discussion of other methods are presented in [1].

Fig. 1. A typical word frequency distribution

For every word of each document, we can consider a record with two fields (ID, P), where ID is

the identifier of the document, for example, its ordinary number within the text collection, and P is

the position of the word in the document, for example, the ordinary number of the word in the

document. Such records are named postings. Let us consider two postings A and B. We define that A

< B when one of the following conditions is met:

1) A.ID < B.ID or

2) A.ID = B.ID and A.P < B.P.

Among the performance improvement methods, the following methods can be considered:

1) Early-termination methods [13, 14] are based on a special sorting of the postings in the

index, in order of decreasing the relevance of the posting. At some point in the reading of the

posting list, we can decide that the relevance of the current posting is lower than some

threshold value, and therefore, the remaining postings can be skipped. It is difficult to

integrate the usage of the proximity information into such methods. We always may have

some document that contains the queried words near each other, but the same document

can also be estimated as a low-relevant document by all other relevance metrics. When we

sort the posting list in the index for the specific key, e.g., a word, we cannot take into account

all variants of occurrence of all other words near the selected word. See more detailed

comments for [2] in [1].

2) Additional indexes methods. In [15], some phrase indexes are presented, but such methods

cannot be applied to proximity full-text searches. For this reason, the author proposed the

method [1] that allows the solution of the proximity full-text search task.

§ 1. Lemmatization
We use a morphological analyser. The analyser provides a list of basic forms for every word. The

basic forms are also named lemmas, and the process of obtaining the list of lemmas for a word is

lemmatization. Let FL-list be the list of all lemmas. The FL-list is ordered in accordance with the

occurrence frequencies of lemmas in decreasing order. The three types of lemmas are defined in

[11] based on the occurrence frequency of a specific lemma.

Stop lemmas are high-frequently used lemmas, such as: we, who, and time.

Frequently used lemmas often occur in texts and always have a meaning. Examples include

book, red.

Ordinary lemmas are all other lemmas, such as promising, glorious, battery, and affiliation.

To divide the set of all lemmas into these three classes, we use the parameters WsCount and

FuCount. In [1], we used WsCount = 700 and FuCount = 2100.

Let the first WsCount elements of the FL-list be stop lemmas. Let the following FuCount

elements of the FL-list be frequently used lemmas. Let all remaining lemmas be ordinary lemmas.

In some search engines, stop lemmas can be excluded from the search and the index and,

therefore, can be ignored in the search. However, it is stated in [1, 15] that a stop lemma can have a

specific meaning in the context of a specific search query in some cases. Therefore, stop lemmas

cannot be excluded from consideration, and examples are provided. In our approach, we consider all

lemmas.

Let us note that the value of the parameter WsCount = 700 is relatively large, and in our

definition, stop lemmas can be those that would very rarely be considered stop lemmas in other

approaches, such as “time” and “work”. In our definition, stop lemmas are those that occur very

frequently in texts, and queries that contain such lemmas need a large amount of time for evaluation

by means of ordinary indexes.

For WsCount, we need to select a value such that, on one hand, all queries that do not contain

any stop lemma should be evaluated within the desired time boundaries; on the other hand, the

index should be created within acceptable time boundaries. For example, consider the following

query: “users need to search”. With the numbers in the FL-list, we have: user: 307, need: 326, to:

10, search: 70. In the environment that was used in [1], this query can be evaluated within 0.016

sec., when additional indexes are used, and within 70.7 sec., when ordinary inverted indexes are

used. The TREC GOV2 text collection was used for this short experiment, and additional indexes were

created using MaxDistance = 5, WsCount = 500, dictionary language – English only. Consider the

following query that consists of less frequently occurring lemmas: “sun train manual”. With the

numbers in the FL-list, we have: sun: 635, train: 513, manual: 1296. The latter query can be

evaluated by means of additional indexes within 0.004 sec and by means of ordinary inverted

indexes within 3 sec. This means that the value of WsCount ≈ 500 or 600 can be interpreted as a

boundary. Consider a query that consists of lemmas, whose numbers in the FL-list are greater than

the specified WsCount. Such a query can be evaluated within several seconds if ordinary inverted

indexes are employed.

Translation note: the example in the Russian version of the paper is different because it cannot

be translated directly.

In [1], a search methodology is presented that consists of the following points:

1) We divide all lemmas into a specific list of classes based on the occurrence frequency of a

lemma: stop lemmas, frequently used lemmas and ordinary lemmas.

2) We use three-component key indexes for the evaluation of queries that consist of only stop

lemmas (this is the most complicated case from a performance point of view).

3) We use two-component key indexes for the evaluation of queries that contain a frequently

used lemma.

4) We include additional information in the content of posting in one-component key indexes.

These indexes are created for frequently used and ordinary lemmas. This information is

used for the evaluation of queries that contain a stop lemma and contain a lemma of some

other type.

In the current work, we consider the constriction process of three-component key indexes.

These indexes solve the subtask of the evaluation of queries that consist only of stop lemmas (the

second point of the methodology). Other cases are considered in [11, 12]. We considered the search

algorithms in [1]. In the current paper, we consider how the index is built.

§ 2. The algorithm of index construction

Three-component key index
The extended stop lemma index or three-component key index [1] contains the list of

occurrences of the stop lemma f for which stop lemmas s and t both occur in the text at distances

that are less than or equal to the MaxDistance from f. The values of f, s and t are the ordinal

numbers of the corresponding lemmas in the FL-list. MaxDistance is the parameter with example

values of 5, 7 or 9.

If the extended (f, s, t) index is constructed, then we can easily produce from this index the

indexes (s, t, f), (t, f, s) and indexes with other permutations of f, s and t. Therefore, we build the (f, s,

t) index only for the case when f ≤ s ≤ t.

We use multiple execution threads. We create several index files to distribute the construction

process over these execution threads. We create an index file for some subset of all three-

component key (f, s, t) indexes, and this index file contains the data for the specified three-

component key indexes.

The example of the division of the set of all (f, s, t) indexes into several subsets is considered in

[16].

The index file is defined by a range of the values of the first component of three-component

keys. Moreover, we divide the subset of keys of a specific index file into groups. The group is defined

by a range of the values of the second component of three-component keys. This subdivision into

groups is performed to optimize the cache usage in the indexing process. Let us consider the

following example from [16].

Example of index file configurations

Example 1. Let WsCount be 150. We produce the following index file configuration:

0: [0, 4] → [0, 54] [55, 149];

1: [5, 15] → [5, 32] [33, 60] [61, 104] [105, 149];

2: [16, 52] → [16, 37] [38, 47] [48, 56] [57, 66] [67, 77] [78, 90] [91, 107] [108, 143] [144, 149];

3: [53, 149] → [53, 80] [81, 94] [95, 107] [108, 121] [122, 149].

We have four index files. In the first index file, the range for the first component of keys is [0, 4],

in the second [5, 15], in the third [16, 52], and in the fourth [53, 149]. For every index file, we

enumerate its groups. Each group is defined by the range of values of the second component of

keys. For example, in the index file 0 that is defined by the range [0, 4], the first group is [0, 54] and

contains the following keys:

(0, x, y): 0 ≤ x ≤ 54, x ≤ y;

(1, x, y): 1 ≤ x ≤ 54, x ≤ y;

. . .

(4, x, y): 4 ≤ x ≤ 54, x ≤ y.

The data for the keys (5, x, y) are placed into index file 1.

Construction of the indexes
We use the approach of easily updatable indexes [17]. This approach allows the addition of new

data in the index file in several iterations. At each iteration, data of some subset of documents are

added into the index. Therefore, the indexing process is the loop in which we repeat the following two-

stage process:

1) Read the subset of source documents in sequence one by one. The postings that we read are

stored in the RAM in array D.

2) Write data from D into the indexes.

Stage 1. Reading of the documents
In the first stage, we read the subset of documents. A document is a sequence of words. For each

word, we apply the morphological analyser and produce the list of lemmas Forms of the word. For each

stop lemma x in Forms, we produce the record (ID, P, FL(x)). In this record, ID is the identifier of the

document, P is the position of the lemma x in the document, FL(x) is the FL-number of the lemma x, i.e.,

the ordinal number of x in the FL-list. In addition, Forms are processed for the construction of indexes of

other kinds.

Please note that the (ID, P, FL(x)) record requires approximately 3 bytes when it is stored in D.

The records that we produced are stored in D in RAM. The size of array D is limited. When the size

of D exceeds the limit, we complete Stage 1. If all documents are processed, then we also complete

Stage 1.

Stage 2. Writing the data from D into the indexes
Source data: D is the array of records (ID, P, Lem). In this array, ID is the identifier of the document,

P is the position of the lemma Lem in the document (ordinal number of the word), Lem is the FL-number

of the lemma. Array D is ordered in increasing order of (ID, P).

For every index file, we start a new execution thread. We limit the number of simultaneously

running threads. Let us consider the following example. We limit the number of simultaneously running

threads by the number 4, but we have 7 index files. At the start of Stage 1, we create 4 new execution

threads for the first four index files. The 5th thread will be started only when one of the previously

started threads is completed. We designate by Stage 2.1 all work that has been performed in one of the

execution threads.

In each execution thread, we organize a loop over the groups of the index file. At each iteration of

the loop, we write into the index file the data for the keys (f, s, t), such as the following:

1) f is included in the range of values of the first component of keys that is defined for the index

file;

2) s is included in the range of values of the second component of keys that is defined for the

group that is in process;

3) f ≤ s ≤ t.

The actions that are needed to process one group of keys are designated Stage 2.1.1. We show the

process of indexing for Example 1 in Fig. 2, with the assumption that all execution threads are started

simultaneously.

Fig. 2. The two-stage indexing process for Example 1.

Stage 2.1.1. Processing a group of keys
We read records from array D in sequence, one by one. Let us consider three records from D that

correspond with lemmas f, s and t. We construct a posting for these records if the following conditions

are met:

Condition 1. Conditions for constructing a posting.

1) f ≤ s ≤ t;

2) (f, s, t) is included in the subset of keys of the current index file, that is, f is included in the range

of values of the first component of keys that is defined for the index file;

3) s is included in the range of values of the second component of keys that is defined for the

current group;

4) Let us consider the distance between f and s and the distance between f and t; the absolute

values of these distances must both be less than or equal to MaxDistance.

An algorithm of postings construction and index construction for a group of

keys
The main idea of the algorithm is as follows. We iterate over array D. For each record (ID, P) of

lemma f, we check for the existence nearby of two other lemmas s and t (i.e., both s and t should be at

distances that are less than or equal to MaxDistance from f).

If we found two such lemmas near f and (f, s, t) satisfies Condition 1, then we construct posting (ID,

P, D1, D2), where D1 is the distance between f and s and D2 is the distance between f and t. Then, we

write the posting into the index file for the key (f, s, t).

Let [IndexS, IndexE] be the range of acceptable values of the first component of keys that is defined

for the current index file.

Let [GroupS, GroupE] be the range of acceptable values of the second component of keys that is

defined for the current group.

We use queues. The queue is the data structure that is the singly linked list. The queue also

contains two pointers: the start of the queue and the end of the queue. The queue supports the

following operations:

1) Add the element to the end of the queue.

2) Remove the element from the start of the queue (the first element).

3) Iterate over elements of the queue from the first element to the last element (from the start to

the end). Each element of the queue contains a pointer to the next element; for the last

element, this pointer has the value NULL.

§ 3. Simplified algorithm for Stage 2.1.1
Let us create a queue QueueT.

In the loop, for every record of D, we place this record at the end of QueueT.

Let QueueT.Start be the start of QueueT.

Let QueueT.End be the end of QueueT.

For every element of the queue, we have a Processed flag with an initial value of 0. We set the

initial value of the flag when the element is placed into the queue.

Just before the new element (ID, P, Lem) is placed into the queue, we perform the following

validation.

Let us consider the following condition: (P − QueueT.Start.P) > MaxDistance × 2.

While the aforementioned condition is met, we perform the “Extract the first element from the

queue” procedure.

The UML diagram of the simplified algorithm for Stage 2.1.1 is presented in Fig. 3.

In steps 2 and 5, queue flushing is performed.

Queue flushing is the process of executing the “Extract the first element from the queue”

procedure in the loop until the queue is empty. The queue flushing process is presented in Fig. 4.

Queue flushing is performed in one of the following cases:

1) We move to another document in the process of reading records from D.

2) Stage 2.1.1 is completed.

In the UML diagram, we use decision split nodes. Decision split nodes have two forward paths. Each

path has a target node. We mark one of these target nodes by a comment. This comment designates the

conditions for the corresponding path. If the designated conditions are not met, then another path is

selected.

Fig. 3. Simplified algorithm for Stage 2.1.1.

Fig. 4. Queue flushing; see steps 2 and 5 in Fig. 3.

“Extract the first element from the queue” procedure
In this procedure, we form and write postings to the indexes (steps 1, 2, 3, 4 in Fig. 5). To form a

posting, we need to select three elements F, S, and T from the QueueT queue. These elements are

needed to define three components of (f, s, t) key for the posting, accordingly.

Condition 2. Conditions for the selection of the F element. This element corresponds to the first

component of the key.

F.P ≤ QueueT.Start.P + MaxDistance, F.Processed = 0, IndexS ≤ F.Lem ≤ IndexE.

Condition 3. Conditions for the selection of the S element. This element corresponds to the second

component of the key.

|F.P − S.P| ≤ MaxDistance, F.Lem ≤ S.Lem, S.P ≠ F.P, GroupS ≤ S.Lem ≤ GroupE.

Condition 4. Conditions for the selection of the T element. This element corresponds to the third

component of the key.

|F.P − T.P| ≤ MaxDistance, S.Lem ≤ T.Lem, T.P ≠ F.P, T.P ≠ S.P.

Let us organize a three-layered loop.

We iterate over all possible elements F that satisfy Condition 2.

For the fixed F, we iterate in the inner loop over all possible elements S that satisfy Condition 3.

For the fixed F and S, we iterate in the second inner loop over all possible elements T that satisfy

Condition 4.

For the selected three elements F, S, and T, we form the key (F.Lem, S.Lem, T.Lem).

Then, we form the posting (F.ID, F.P, S.P − F.P, T.P − F.P).

Then, we write the posting into the index with the formed key.

The distances between components of the key are included in the posting.

The distances are stored with the sign; therefore, we can determine for both S.Lem and T.Lem after

or before F.Lem these lemmas presented in the text.

We also set F.Processed = 1.

When the three-layered loop is completed, we remove the first element from the queue.

The procedure is presented in Fig. 5.

Fig. 5. The “Extract the first element from the queue” procedure for the simplified algorithm. See

step 3 in Fig. 3 and step 1 in Fig. 4.

Fig. 6. The “Extract the first element from the queue” procedure for the simplified algorithm; Step

2 in Fig. 5.

Transition to another document
Only elements with the same value of ID should exist in the queue. If in the sequential process of

reading D, we encounter a record with a different ID than all elements of the queue have, we perform

the queue flushing. In the queue flushing process, we execute “Extract the first element from the

queue” procedure until the queue is not empty. This process is presented in Fig. 4.

After queue flushing, the new element with the new document ID is placed in the queue.

§ 4. The optimized algorithm for Stage 2.1.1
We create three queues: QueueF, QueueS, and QueueT. We read records from array D in sequence,

one by one. The records in D are sorted in increased order of (ID, P).

Let the current record be R = (ID, P, Lem).

The purpose of the QueueF queue is to store such records R that can be used for the first

component of the (f, s, t) key.

The purpose of the QueueS queue is to store such records R that can be used for the second

component of the (f, s, t) key.

The purpose of the QueueT queue is to store such records R that can be used for the third

component of the (f, s, t) key.

We skip record R if all of the following conditions are met:

1) R.Lem is not included in the [IndexS, IndexE] range.

2) R.Lem is not included in the [GroupS, GroupE] range.

3) R.Lem < GroupS.

If the aforementioned conditions 1) and 2) are met, then R.Lem can only be used as the third

component of the key. However, R.Lem must be greater or equal to GroupS, to be used as the third

component of the key.

Otherwise, if the aforementioned conditions are not met for R, we perform the following actions.

1) If R.Lem is included in the [IndexS, IndexE] range; then, we place R at the end of QueueF.

2) If R.Lem is included in the [GroupS, GroupE] range; then, we place R at the end of QueueS.

3) We place R at the end of QueueT.

The same record R can be placed in several queues.

For every queue, when a new element is placed into the queue, the new element is always greater

than or equal to the last element of the queue (in regard to (ID,P)’s rules of comparison).

In every queue, all elements have the same value of ID.

Let QueueT.Start be the first element of QueueT. Let QueueT.End be the last element of QueueT

(i.e., the last element that was added into the queue).

The following invariant should be preserved:

(QueueT.End.P − QueueT.Start.P) ≤ MaxDistance × 2.

Just before a new element (ID, P, Lem) is added into the queues, we validate the invariant.

We perform the “Extract the first element from the queue” procedure, while the following

condition is met:

(P − QueueT.Start.P) > MaxDistance × 2.

“Extract the first element from the queue” procedure
As a result of this procedure, the first element will be removed from QueueT. The first element of

the QueueT is the minimal element in the QueueT. This element will also be removed from QueueS,

QueueF, if possible, i.e., this element exists in some of these queues.

In addition, for each element F in QueueF with the following condition:

F.P ≤ QueueT.Start.P + MaxDistance,

the following actions will be performed:

1) All postings with the form (ID, F.P, X, Y) will be written into the indexes for the keys, where

F.Lem define the first component of the key (here X and Y are some distance values that are

defined by some other lemmas that are located near F.P in the text).

2) F will be removed from the QueueF queue.

At the start of the procedure, the QueueT queue consists of all possible records from D with form

(ID, P, Lem) that satisfy the following condition:

QueueT.Start.P ≤ P ≤ QueueT.Start.P + MaxDistance× 2.

Let us consider the element F from the QueueF queue that satisfies the following conditions:

Condition 5. Conditions for the selection of the F element. This element corresponds to the first

component of the key.

1) F.P ≤ QueueT.Start.P + MaxDistance.

This element will be used for the first component of the key. Element F corresponds to an

occurrence of a lemma f in a text. Lemma f will be used for the first component of the (f, s, t) key.

Then, we need to select an element S from QueueS that will be used to define the second

component of the key. This element corresponds to an occurrence of some lemma s in texts. Lemma

s will be used for the second component of the (f, s, t) key.

Let us consider the element S from the QueueS queue that satisfies the following conditions:

Condition 6. Conditions for the selection of the S element. This element corresponds to the

second component of the key.

1) S.P ≠ F.P (different components of the key should correspond to different words with

different positions).

2) S.P ≤ F.P + MaxDistance.

3) S.Lem ≥ F.Lem (the condition f ≤ s ≤ t should be satisfied for the (f, s, t) key).

Then, we need to select an element T from the QueueT that will be used to define the third

component of the key. This element corresponds to an occurrence of some lemma t in texts. Lemma

t will be used for the third component of the (f, s, t) key.

Let us consider the element T from QueueT that satisfies the following conditions:

Condition 7. Conditions for the selection of the T element. This element corresponds to the third

component of the key.

1) T.P ≠ F.P, T.P ≠ S.P.

2) T.P ≤ F.P + MaxDistance.

3) T.Lem ≥ S.Lem, T.Lem ≥ F.Lem.

4) T.Lem > S.Lem or ((T.Lem = S.Lem) and (T.P > S.P)).

For every element F of QueueF, for every element S of QueueS, for every element T of QueueT,

which elements satisfy conditions 5, 6, 7, accordingly, we do the following: we save in the index

(F.Lem, S.Lem, T.Lem) the new posting (ID, F.P, S.P − F.P, T.P − F.P).

Theorem 1 (about the correctness of the algorithm). When the “Extract the first element from

the queue” procedure is executed, for any element F from QueueF, which element satisfies Condition

5, QueueT contains all elements T = (ID, P, Lem) of array D that satisfy the following condition: |T.P −

F.P| ≤ MaxDistance.

Proof. Let us consider an arbitrary record T = (ID, P, Lem) of array D; this record also satisfies

the following condition: |T.P − F.P| ≤ MaxDistance.

If T.P ≥ F.P, then T.P − F.P ≤ MaxDistance; therefore, T.P ≤ MaxDistance + F.P.

F.P ≤ QueueT.Start.P + MaxDistance (Condition 5).

T.P ≤ MaxDistance + QueueT.Start.P + MaxDistance = QueueT.Start.P + MaxDistance × 2.

The QueueT queue contains all possible records with the latter condition because the “Extract

the first element from the queue” procedure is executed in one of the two following cases:

1) Let us consider the record N of D, where N is the next record to read. The following condition

is met: (N.P − QueueT.Start.P) > MaxDistance × 2.

2) All records of D are processed.

The analysis of case T.P ≥ F.P is completed.

Let us now consider the case when T.P < F.P.

If T.P < F.P, then F.P − T.P ≤ MaxDistance; therefore, T.P ≥ F.P – MaxDistance.

If no elements were removed from QueueT, then T should be in QueueT.

Otherwise, let Q be the last element that was removed from QueueT.

F.P − Q.P > MaxDistance because all elements F′ with the condition F′.P ≤ Q.P + MaxDistance

were processed and removed from QueueF in the previous call of the procedure.

F.P > Q.P + MaxDistance; therefore, T.P > Q.P.

Therefore, T should be in QueueT because before only elements T′ with the following condition

were removed from QueueT: T′.P ≤ Q.P. At the same time, T.P < F.P and QueueT contains F;

therefore, T was added into QueueT beforehand.

The proof is completed.

In the optimized algorithm, we do not need the Processed flag, and we remove elements from

QueueF instead using this flag.

Note 1. Please note that QueueS contains all elements of QueueT; these elements can also be

used to define the second component of the key. Such elements are placed in both QueueS and

QueueT. We use QueueS to optimize the iteration over such elements.

Note 2. Please note that the last point in Conditions 7 is used for the exclusion of duplicates.

Let us consider an example. Let us consider lemmas f and s, s ≥ f. Let QueueT contain exactly

one record F for lemma f. Let QueueT contain exactly two records, A and B, for lemma s. Let us not

take into account the last point of Conditions 7. In this case, two postings can be generated for the

key (f, s, s). These are the following postings:

(ID, F.P, A.P − F.P, B.P − F.P) and (ID, F.P, B.P − F.P, A.P − F.P).

In fact, we only need one of them.

Note 3. We need to be sure that in all queues, all elements have the same ID. This is the same

case as in the case of the simplified algorithm. If the new record that we read has an ID that is

different from the current ID that elements in the queues have, then we perform queue flushing.

Queue flushing means that we perform the “Extract the first element from the queue” procedure in

the loop until all queues are empty.

Validation by experiments
With Theorem 1, we have a theoretical basis for the algorithm. In addition, we can check the

correctness of the indexes by performing search experiments. We can select a document that was

indexed. We can produce a list of queries based on the text of the document. Then, we can evaluate

each query. For each query, the document and the specific place in the document from which the

query was taken should be in the search results. See an example of such an experiment in [1].

§ 5. Key optimizations and the estimation of the performance

Reconstruction of the array D
The total length and total size of D affect the indexing time. For every group, we need to perform

iteration over all elements of D. We can optimize the iteration process by reconstructing D at some

points. Let us divide the indexing process into several phases.

Let us consider an index file. The set of keys of the index file is limited by the range of

acceptable values of the first component of keys. For example, in Example 1, we have 4 index files.

In the first index file, the acceptable range of the first component of keys is [0, 4], in the second

index file [5, 15], in the third index file [16, 52] and in the fourth index file [53, 149]. The ranges of

the index files are ordered in increasing order.

Let us imagine that the first index file is written. Then, we can exclude from D all records (ID, P,

Lem) in which Lem ≤ 4. For example, for the second index file [5, 15], each component of every key

is greater than or equal to 5 (for any (f, s, t) key, we have f ≤ s ≤ t). For the third index file [16, 52],

each component of every key is greater than or equal to 16.

Let us imagine that the second index file is also written. Then, we can exclude from D all records

(ID, P, Lem) in which Lem ≤ 15. This exclusion of some records we call reconstruction of D.

We do not want to reconstruct D after completing the writing of every index file because in this

case, we cannot perform indexing of several index files simultaneously in parallel.

In Example 1, we use WsCount = 150, which is relatively small. For WsCount = 700, we create

79 index files. In the experiments presented, we divide this set of index files that consists of 79

index files into three groups (15, 23, 41). Then, we organize the indexing process into three phases.

After each phase, we reconstruct D by removing records that are no longer needed. That means, in

the first phase, we are writing the first 15 index files in parallel. We wait until all these index files are

written. Then, we reconstruct D. Following this, we start the next phase in which we are writing the

following 23 index files and so on.

Equalization of the index file processing time
It is important that all indexing threads perform their work at a similar time. However, the

indexing time is dependent on the number of records to write. Keys that contain lemmas with a lower

value of the FL-number have a larger value of records in comparison with the keys that consist of

lemmas with a larger value of the FL-number. Therefore, for the index files for which the range of

acceptable values of the first component of keys are defined by small numbers, the length of the

ranges should be less than that for the following index files. For example, consider Example 1. The

range for the first index file is [0, 4] and that for the second index file is [5, 15].

However, if WsCount is relatively large, then that is not enough. We can use the second

component of keys to define the subset of keys of the index file. For example, let us consider

Example 1 and the second index file. The index file is defined by the range [5, 15]. For the index file,

we define four groups of keys [5, 32], [33, 60], [61, 104], [105, 149], and each group is defined by

the acceptable values of the second component of keys.

Instead of creating one index file, we can create two index files. For the first new index file, we

use [5, 15] as the range for the first component of keys and use two ranges, [5, 32], [33, 60], for the

second component of keys. For the second new index file, we also use [5, 15] as the range for the

first component of keys but use two ranges, [61, 104], [105, 149], for the second component of

keys.

Coefficient of utilization
We limit the number of simultaneously running indexing threads. This is because each index

thread needs a significant amount of cache that depends on the count of keys of its index file. For

each key, we need some amount of memory for the cache. Usually, we have such an amount of

index files that we do not have memory to write all of them simultaneously. In this case, we start

some amount of index threads. Then, we wait for a thread of them to complete. Then, we can start

another index thread and so on. It will be satisfactory, if at the end of the indexing process, we had

the maximum number of threads running, and then all of these threads are completed

simultaneously.

Let us introduce the RefCount variable, this is the number of running threads at a moment in

time. When we start a thread, we increment RefCount. When a thread is completed, we decrement

RefCount. Additionally, when RefCount needs to be changed, we have Delta, which is the time that

has passed from the previous change of the value of RefCount. Therefore, at each moment of

changing RefCount, before the change of RefCount, we have a record (RefCount, Delta) that we push

in a list.

Therefore, we have n records,  ,i iRefCount Delta , 1 ≤ i ≤ n, each of which corresponds to a

time interval of length iDelta seconds. Here, n is the count of the changes of RefCount, that is, the

count of events of starting or completing a thread. Let us consider the time interval iDelta . During

this time interval, we have iRefCount running threads. Let MaxRefCount be the maximum number of

simultaneously running threads during the entire indexing process.

 
1

.max
n

iMaxRefCount RefCount

The entire indexing time is divided into the list of intervals  ,i iRefCount Delta . This list consists

of n intervals.

The entire indexing time is


1

.
n

iTotalDelta Delta

We calculate the utilization coefficient U:

   
  
    

   
  
 
1 1

/ .
n n

i i iU RefCount Delta MaxRefCount Delta

Let us imagine that U = 1. In this case, at every moment of time, we had the maximum number

of threads running. When the indexing was completed, all threads that were running at this moment

completed their work simultaneously.

This can be done, for example, if each indexing thread completed their work at the same time.

Moreover, the total number of index threads is divisible by MaxRefCount.

Additionally, U can be 1 if we start all of the indexing threads simultaneously and all of them

complete their work simultaneously.

If U is near 1, then the computer resources are used in an effective way.

In our experiments, we have U ≥ 0.8.

The maximum load coefficient M is defined by which part of time we have the maximum number

of running threads.

    

 

 
 

1

, / ,
n

i iM eq RefCount MaxRefCount Delta TotalDelta where

 
1, if ,

,
0, if .

a b
eq a b

a b


 



In our experiments, we have 0.55 ≤ M ≤ 0.8.

§ 6. Experiments
The following computational resources were used for the experiments.

Intel Xeon X5650 2,67 GHz (2 processors, 6 cores each), 48 GB. RAM.

Windows Server 2008 R2 Enterprise, x64 bit.

HGST HUS726060AL, 6 Tb, SATA.

Text collection from [1] was used.

The text collection contains 195 thousand files with a total size of 71.5 GB. All files are ordinary

texts and single byte encoded. The text collection consists of fiction books and magazine articles.

The primary language is Russian and queries are also in the Russian language.

We used WsCount = 700 and FuCount = 2100.

We created three indexes: Idx1 with MaxDistance = 5, Idx2 with MaxDistance = 7 and Idx3 with

MaxDistance = 9.

The total sizes of the indexes are as follows:

Idx1: 746 GB., Idx2: 1.23 TB., Idx3: 1.88 TB.

The total building times of the indexes are as follows:

Idx1: 14 h 43 min, Idx2: 19 h 31 min, Idx3: 26 h 49 min.

The total sizes of the three-component key indexes are as follows:

Idx1: 425 GB., Idx2: 883 GB., Idx3: 1.45 TB.

The total times of the three-component key index construction are as follows (see Fig. 7).

Idx1: 8 h 06 min, Idx2: 12 h 39 min, Idx3: 18 h 47 min.

Fig. 7. The total times of the three-component key index construction (hours)

for MaxDistance = 5, 7, 9.

§ 7. Additional questions
In the aforementioned experiments, we created several index files, and we used the NTFS file

system. The following question arises. Can the particularities of the file system affect the

performance? To investigate this question, we created another index with MaxDistance = 5. In this

experiment, we saved data directly into logical volume.

We created a primitive file system for this goal. In this file system, every file is stored in a list of

large blocks. The size of each block is 64 MB. When a file needs to be extended, we allocate a new

large block on the volume for this file. The volume is divided into two areas: a data area and free

space area. When a new large block needs to be allocated, we allocate it at the start of the free

space area. Under these conditions, we created the index at 13 h 53 min. This time is relatively

lower than 14 h 43 min, which is required to create a similar index on NTFS volume. The average

search times did not change.

Please note that the total sizes of the proposed indexes are significantly greater than the sizes

of ordinary inverted indexes. However, the goal of the method is to increase the search speed by

several orders of magnitude. In many cases, with the use of the proposed method, the total cost of a

search system can be significantly decreased. Frequently, the volume of disk space can more easily

be increased than buying several new servers. Additionally, the following question arises. Can the

index compression be effectively applied to the proposed indexes?

We performed a preliminary experiment. We used Zip compression. We tried to compress the

entire index and tried to compress specified posting lists. The size of the compressed data is

approximately 70% of the uncompressed data.

Let us now consider the relevance. Let us consider a search query Q that consists of n words.

The search result is the list of records. Each record contains the identifier of a document ID. Each

record also contains a list of positions of queried words in the document, that is   1,...,X .nX X

In [2], the following relevance function is used:         .S SR IR TP Here, SR is the static

rank of the document ID, and this value is not dependent on the search query; for example,

PageRank can be used. IR can be used for taking into account statistical and other information of

queried words, for example, BM25. TP can be used for taking into account proximity information,

that is, how near to each other the queried words occur in the document. The values of SR, IR and

TP are normalized (i.e., each of them is a number in the range [0, 1]), and   , , – are parameters.

Often, the value of TP is determined by a number that is inversely proportional to the square of

the distance between the queried words in the document. In [2], every query consists of two words

and 


2

1
(,B) ,TP A

A B

where A and B are positions of the queried words in the document (e.g.,

ordinal numbers of the words). In [18], some values, which are inversely proportional to the square

of the distance between queried words in the document, are also used for the calculation of TP. The

values are combined with the BM25 value to produce the final rank.

For the case when the query consists of more than two words, we propose the following

function.

  


  
2

1
(,B) ,

() () 2
TP A

A X B X n
 where

 


1
() min ,i

i n
A X X

 


1
() max .i

i n
B X X

We performed search experiments with queries that consist of frequently occurring words. In

these experiments, we used the ordinary inverted index. If we consider a query that consists of

frequently occurring words, then we usually have many documents with similar values of BM25 in

the result list. Let us introduce the following parameter: RankBorder = 0.9. If a query consists of

frequently occurring words, then in the search results, we have many documents with normalized

BM25 values ≥ RankBorder. In extreme cases, when queries consist of high-frequently occurring

words, we can have several thousand such documents, each of which has a normalized BM25 value

that is greater than or equal to 0.9. Please note that the average document size in the indexed text

collection is approximately 54 thousand words. We suppose that if a query consists of frequently

occurring words that occur in a large number of documents, then information retrieval ranking

functions, such as BM25, do not allow the selection of a short list of relevant documents. Therefore,

we require additional relevance criteria, TP, for such queries.

When our additional indexes are used, we can find only documents in which the queried words

occur near each other, and the distance between the queried words in the text must be no more

than MaxDistance. Therefore, the value of MaxDistance should be large enough, to find all

occurrences of queried words in the documents with a large value of TP. This can be achieved if the

value of TP is inversely proportional to the square of the distance between queried words.

For example, let MaxDistance be 9. For any query with length ≤ 7, and for any search result X

with condition |A(X) – B(X)| > 9, we have TP ≤ 1/25 = 0.04. For example, let us consider a query

with a length of 7 words. If a document contains the queried words in the form of a phrase, then

|A(X) – B(X)|= 6 and TP = 1. The value of TP will be lower if any “unnecessary” words occur between

queried words in the document. For example, if |A(X) – B(X)|= 10, then TP = 1 / (10 – 5)2 = 0.04.

Therefore, by means of additional indexes, for any query with length ≤ 7, we find in the documents all

occurrences of the queried words with a large value of TP > 0.04. Longer queries should be divided

into parts [1].

Let us imagine that we have some occurrences of queried words in the texts, the value of SR is

large, and the value of TP is small. Such occurrences can be omitted in the search by means of

additional indexes. Such occurrences, with small values of TP, can be considered to be low relevant

and can be skipped. In addition, after the search by means of additional indexes, we can execute an

additional search in the ordinary index without considering the distance between words [1]. The

search, in which distance between words is not considered, required only a document-level index,

the index in which for every word of every document we store only one record. The search in such an

index can be performed significantly faster than can be accomplished in the word-level index.

§ 8. Conclusion

We developed an algorithm of three-component key index construction. The results of

construction experiments are presented. The following goals are accomplished.

We showed that three component indexes can be created for relatively large values of

MaxDistance (i.e., 5, 7, 9).

We showed that with an increase in the value of MaxDistance, the total sizes and construction

times of the indexes significantly increase.

We showed that the total sizes of indexes that are constructed are significantly larger than the

sizes of ordinary inverted indexes, but this factor is not critical because modern data storage

devices, such as hard drives, have large capacities.

We determined that the construction algorithm requires many processor resources. The

calculation power of the processor is more important than the power of the input/output subsystem

for our algorithm.

We proved the correctness of the construction algorithm.

We introduced the utilization coefficient as a criterion for the effectiveness of the usage of

computational resources. The value of the utilization coefficient that was measured in the

experiments shows that computational resources were used in an effective way.

In the future, it will be interesting to consider ways to optimize the algorithm to allow index

construction more quickly. It will also be interesting to determine what values of WsCount and

FuCount are optimal, meaning with which values of the parameters could we construct the indexes

faster while maintaining the search time within the desired boundaries.

Funding. The original work was supported by Act 211 Government of the Russian Federation,

contract № 02.A03.21.0006.

REFERENCES

1) Veretennikov A.B. Proximity full-text search with response time guarantee by means of three

component keys, Bulletin of the South Ural State University. Series: Computational Mathematics

and Software Engineering, 2018, vol. 7, no. 1, pp. 60–77 (in Russian).

DOI: 10.14529/cmse180105

2) Yan H., Shi S., Zhang F., Suel T., Wen J.-R. Efficient Term Proximity Search with Term-Pair

Indexes, CIKM '10 Proceedings of the 19th ACM International Conference on Information and

Knowledge Management, Toronto, 2010, pp. 1229–1238.

DOI: 10.1145/1871437.1871593.

3) Buttcher S., Clarke C., Lushman B. Term proximity scoring for ad-hoc retrieval on very large text

collections, SIGIR '06 Proceedings of the 29th annual international ACM SIGIR conference on

Research and development in information retrieval, 2006, pp. 621–622.

DOI: 10.1145/1148170.1148285

4) Rasolofo Y., Savoy J. Term Proximity Scoring for Keyword-Based Retrieval Systems, European

Conference on Information Retrieval (ECIR) 2003: Advances in Information Retrieval, 2003, pp.

207–218.

DOI: 10.1007/3-540-36618-0_15

5) Zobel J., Moffat A. Inverted Files for Text Search Engines, ACM Computing Surveys. 2006. Vol.

38, No. 2. Article 6.

DOI: 10.1145/1132956.1132959.

6) Tomasic A., Garcia-Molina H., Shoens K. Incremental Updates of Inverted Lists for Text Document

Retrieval, SIGMOD '94 Proceedings of the 1994 ACM SIGMOD International Conference on

Management of Data, Minneapolis, Minnesota, 1994, pp. 289–300.

DOI: 10.1145/191839.191896.

7) Brown E.W., Callan J.P., Croft W.B. Fast Incremental Indexing for Full-Text Information Retrieval,

VLDB '94 Proceedings of the 20th International Conference on Very Large Data Bases, Santiago

de Chile, Chile, 1994. pp. 192–202.

8) Luk R.W.P. Scalable, statistical storage allocation for extensible inverted file construction,

Journal of Systems and Software archive, 2011, vol. 84, no. 7. pp. 1082–1088.

DOI: 10.1016/j.jss.2011.01.049

9) Zipf G. Relative Frequency as a Determinant of Phonetic Change, Harvard Studies in Classical

Philology, 1929, vol. 40, pp. 1–95.

DOI: 10.2307/408772.

10) Miller R.B. Response Time in Man-Computer Conversational Transactions, In Proceedings: AFIPS

Fall Joint Computer Conference, San Francisco, California, 1968, vol. 33, pp. 267–277.

DOI: 10.1145/1476589.1476628.

11) Veretennikov A.B. Using additional indexes for fast full-text searching phrases that contains

frequently used words, Control systems and information technologies, 2013, vol. 52, no 2, pp.

61–66 (in Russian).

12) Veretennikov A.B. Efficient full-text search by means of additional indexes of frequently used

words, Control systems and information technologies, 2016, vol. 66, no 4, pp. 52–60 (in

Russian).

13) Anh V.N., de Kretser O., Moffat A. Vector-Space Ranking with Effective Early Termination, SIGIR

'01 Proceedings of the 24th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, New Orleans, Louisiana, USA, 2001, P. 35–42.

DOI: 10.1145/383952.383957.

14) Garcia S., Williams H.E., Cannane A. Access-Ordered Indexes, ACSC '04 Proceedings of the 27th

Australasian Conference on Computer Science, Dunedin, New Zealand, 2004, P. 7–14.

15) Williams H.E., Zobel J., Bahle D. Fast Phrase Querying with Combined Indexes, ACM Transactions

on Information Systems (TOIS), 2004, vol. 22, no. 4, pp. 573–594.

DOI: 10.1145/1028099.1028102.

16) Veretennikov A.B. Efficient full-text proximity search by means of three component keys, Control

systems and information technologies, 2017, vol. 69, no. 3, pp. 25–32 (in Russian).

17) Veretennikov A.B. About a structure of easy updatable full-text indexes, Proceedings of the

International Youth School-conference «SoProMat-2017», Yekaterinburg, Russia, 2017, pp. 30–

41 (in Russian).

URL: http://ceur-ws.org/Vol-1894/.

18) Lu X., Moffat A., Culpepper J.S. Efficient and effective higher order proximity modeling, ICTIR '16

Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval,

2016. pp. 21–30.

DOI: 10.1145/2970398.2970404

Received 01.07.2018

Veretennikov Alexander Borisovich, Candidate of Physics and Mathematics, Associate Professor,

Department of Calculation Mathematics and Computer Science, Ural Federal University,

pr. Lenina, 51, Yekaterinburg, 620083, Russia. E-mail: alexander@veretennikov.ru

MSC2010: 68P20, 68P10

Citation: A. B. Veretennikov, “An efficient algorithm for three-component key index construction”,

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:1 (2019), 117–132,

DOI: 10.20537/vm190111

See also:

http://www.veretennikov.ru/

http://www.veretennikov.org/Default.aspx?f=Publish%2fDefault.aspx&language=en

